skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Computational Discovery of New 2D Materials Using Deep Learning Generative Models
Two-dimensional (2D) materials have emerged as promising functional materials with many applications such as semiconductors and photovoltaics because of their unique optoelectronic properties. Although several thousand 2D materials have been screened in existing materials databases, discovering new 2D materials remains challenging. Herein, we propose a deep learning generative model for composition generation combined with a random forest-based 2D materials classifier to discover new hypothetical 2D materials. Furthermore, a template-based element substitution structure prediction approach is developed to predict the crystal structures of a subset of the newly predicted hypothetical formulas, which allows us to confirm their structure stability using DFT calculations. So far, we have discovered 267 489 new potential 2D materials compositions, where 1485 probability scores are more then 0.95. Among them, we have predicted 101 crystal structures and confirmed 92 2D/layered materials by DFT formation energy calculation. Our results show that generative machine learning models provide an effective way to explore the vast chemical design space for new 2D materials discovery.  more » « less
Award ID(s):
1940099 1905775
PAR ID:
10288156
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
ACS Applied Materials & Interfaces
ISSN:
1944-8244
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract High‐throughput screening has become one of the major strategies for the discovery of novel functional materials. However, its effectiveness is severely limited by the lack of sufficient and diverse materials in current materials repositories such as the open quantum materials database (OQMD). Recent progress in deep learning have enabled generative strategies that learn implicit chemical rules for creating hypothetical materials with new compositions and structures. However, current materials generative models have difficulty in generating structurally diverse, chemically valid, and stable materials. Here we propose CubicGAN, a generative adversarial network (GAN) based deep neural network model for large scale generative design of novel cubic materials. When trained on 375 749 ternary materials from the OQMD database, the authors show that the model is able to not only rediscover most of the currently known cubic materials but also generate hypothetical materials of new structure prototypes. A total of 506 such materials have been verified by phonon dispersion calculation. Considering the importance of cubic materials in wide applications such as solar panels, the GAN model provides a promising approach to significantly expand existing materials repositories, enabling the discovery of new functional materials via screening. The new crystal structures discovered are freely accessible atwww.carolinamatdb.org. 
    more » « less
  2. Abstract Discovering new materials is a challenging task in materials science crucial to the progress of human society. Conventional approaches based on experiments and simulations are labor-intensive or costly with success heavily depending on experts’ heuristic knowledge. Here, we propose a deep learning based Physics Guided Crystal Generative Model (PGCGM) for efficient crystal material design with high structural diversity and symmetry. Our model increases the generation validity by more than 700% compared to FTCP, one of the latest structure generators and by more than 45% compared to our previous CubicGAN model. Density Functional Theory (DFT) calculations are used to validate the generated structures with 1869 materials out of 2000 are successfully optimized and deposited into the Carolina Materials Databasewww.carolinamatdb.org, of which 39.6% have negative formation energy and 5.3% have energy-above-hull less than 0.25 eV/atom, indicating their thermodynamic stability and potential synthesizability. 
    more » « less
  3. The development of next-generation energy storage systems relies on discovering new materials that support multivalent-ion transport. Transition metal oxides (TMOs) are promising due to their structural versatility, high ionic conductivity, and ability to accommodate multiple charge carriers. However, their vast compositional and structural diversity makes traditional exploration inefficient. This work presents a generative AI framework combining a crystal diffusion variational autoencoder (CDVAE) and a fine-tuned large language model (LLM) to discover porous oxide materials. Thousands of candidate structures are generated and screened for structural validity, thermodynamic stability, and electronic properties using a graph-based machine learning model and density functional theory (DFT) calculations. CDVAE identifies a broader variety of structures, including five novel TMO-based candidates, while LLM excels in generating highly stable structures near equilibrium. This approach demonstrates the power of generative AI in accelerating the discovery of advanced battery materials for multivalent-ion storage. 
    more » « less
  4. Among the diversity of new materials, two-dimensional crystal structures have been attracting significant attention from the broad scientific community due to their promising applications in nanoscience. In this study we predict a novel two-dimensional ferromagnetic boron material, which has been exhaustively studied with DFT methods. The relaxed structure of the 2D-B 6 monolayer consists of slightly flattened octahedral units connected with 2c-2e B–B σ-bonds. The calculated phonon spectrum and ab initio molecular dynamics simulations reveal the thermal and dynamical stability of the designed material. The calculation of the mechanical properties indicate a relatively high Young's modulus of 149 N m −1 . Moreover, the electronic structure indicates the metallic nature of the 2D-B 6 sheets, whereas the magnetic moment per unit cell is found to be 1.59 μ B . The magnetism in the 2D-B 6 monolayer can be described by the presence of two unpaired delocalized bonding elements inside every distorted octahedron. Interestingly, the nature of the magnetism does not lie in the presence of half-occupied atomic orbitals, as was shown for previously studied magnetic materials based on boron. We hope that our predictions will provide promising new ideas for the further fabrication of boron-based two-dimensional magnetic materials. 
    more » « less
  5. Abstract Despite the machine learning (ML) methods have been largely used recently, the predicted materials properties usually cannot exceed the range of original training data. We deployed a boundless objective-free exploration approach to combine traditional ML and density functional theory (DFT) in searching extreme material properties. This combination not only improves the efficiency for screening large-scale materials with minimal DFT inquiry, but also yields properties beyond original training range. We use Stein novelty to recommend outliers and then verify using DFT. Validated data are then added into the training dataset for next round iteration. We test the loop of training-recommendation-validation in mechanical property space. By screening 85,707 crystal structures, we identify 21 ultrahigh hardness structures and 11 negative Poisson’s ratio structures. The algorithm is very promising for future materials discovery that can push materials properties to the limit with minimal DFT calculations on only ~1% of the structures in the screening pool. 
    more » « less