skip to main content


Title: Risk-Aware Application Placement in Mobile Edge Computing Systems: A Learning-based Optimization Approach
In this paper, we address the problem of application placement in MEC systems that takes into account the risk of exceeding the energy budget of the edge servers. We formulate the problem as a chance-constrained program, where the objective is to maximize the total quality of service in the system, while keeping the expected risk of exceeding the edge servers' energy budget within an acceptable threshold. We develop a learning-based method to solve the problem which requires a very small execution time for large size instances. We evaluate the performance of the proposed method by conducting an extensive experimental analysis.  more » « less
Award ID(s):
1724227
NSF-PAR ID:
10288187
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2020 IEEE International Conference on Edge Computing (EDGE)
Page Range / eLocation ID:
83 to 90
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In the resource-rich environment of data centers most failures can quickly failover to redundant resources. In contrast, failure in edge infrastructures with limited resources might require maintenance personnel to drive to the location in order to fix the problem. The operational cost of these "truck rolls" to locations at the edge infrastructure competes with the operational cost incurred by extra space and power needed for redundant resources at the edge. Computational storage devices with network interfaces can act as network-attached storage servers and offer a new design point for storage systems at the edge. In this paper we hypothesize that a system consisting of a larger number of such small "embedded" storage nodes provides higher availability due to a larger number of failure domains while also saving operational cost in terms of space and power. As evidence for our hypothesis, we compared the possibility of data loss between two different types of storage systems: one is constructed with general-purpose servers, and the other one is constructed with embedded storage nodes. Our results show that the storage system constructed with general-purpose servers has 7 to 20 times higher risk of losing data over the storage system constructed with embedded storage devices. We also compare the two alternatives in terms of power and space using the Media-Based Work Unit (MBWU) that we developed in an earlier paper as a reference point. 
    more » « less
  2. null (Ed.)
    Unmanned Aerial Vehicle (UAV)-assisted Multi-access Edge Computing (MEC) systems have emerged recently as a flexible and dynamic computing environment, providing task offloading service to the users. In order for such a paradigm to be viable, the operator of a UAV-mounted MEC server should enjoy some form of profit by offering its computing capabilities to the end users. To deal with this issue in this paper, we apply a usage-based pricing policy for allowing the exploitation of the servers’ computing resources. The proposed pricing mechanism implicitly introduces a more social behavior to the users with respect to competing for the UAV-mounted MEC servers’ computation resources. In order to properly model the users’ risk-aware behavior within the overall data offloading decision-making process the principles of Prospect Theory are adopted, while the exploitation of the available computation resources is considered based on the theory of the Tragedy of the Commons. Initially, the user’s prospect-theoretic utility function is formulated by quantifying the user’s risk seeking and loss aversion behavior, while taking into account the pricing mechanism. Accordingly, the users’ pricing and risk-aware data offloading problem is formulated as a distributed maximization problem of each user’s expected prospect-theoretic utility function and addressed as a non-cooperative game among the users. The existence of a Pure Nash Equilibrium (PNE) for the formulated non-cooperative game is shown based on the theory of submodular games. An iterative and distributed algorithm is introduced which converges to the PNE, following the learning rule of the best response dynamics. The performance evaluation of the proposed approach is achieved via modeling and simulation, and detailed numerical results are presented highlighting its key operation features and benefits. 
    more » « less
  3. Edge computing allows end-user devices to offload heavy computation to nearby edge servers for reduced latency, maximized profit, and/or minimized energy consumption. Data-dependent tasks that analyze locally-acquired sensing data are one of the most common candidates for task offloading in edge computing. As a result, the total latency and network load are affected by the total amount of data transferred from end-user devices to the selected edge servers. Most existing solutions for task allocation in edge computing do not take into consideration that some user tasks may actually operate on the same data items. Making the task allocation algorithm aware of the existing data sharing characteristics of tasks can help reduce network load at a negligible profit loss by allocating more tasks sharing data on the same server. In this paper, we formulate the data sharing-aware task allocation problem that make decisions on task allocation for maximized profit and minimized network load by taking into account the data-sharing characteristics of tasks. In addition, because the problem is NP-hard, we design the DSTA algorithm, which finds a solution to the problem in polynomial time. We analyze the performance of the proposed algorithm against a state-of-the-art baseline that only maximizes profit. Our extensive analysis shows that DSTA leads to about 8 times lower data load on the network while being within 1.03 times of the total profit on average compared to the state-of-the-art. 
    more » « less
  4. null (Ed.)
    In this paper, a novel data offloading decision-making framework is proposed, where users have the option to partially offload their data to a complex Multi-access Edge Computing (MEC) environment, consisting of both ground and UAV-mounted MEC servers. The problem is treated under the perspective of risk-aware user behavior as captured via prospect-theoretic utility functions, while accounting for the inherent computing environment uncertainties. The UAV-mounted MEC servers act as a common pool of resources with potentially superior but uncertain payoff for the users, while the local computation and ground server alternatives constitute safe and guaranteed options, respectively. The optimal user task offloading to the available computing choices is formulated as a maximization problem of each user's satisfaction, and confronted as a non-cooperative game. The existence and uniqueness of a Pure Nash Equilibrium (PNE) are proven, and convergence to the PNE is shown. Detailed numerical results highlight the convergence of the system to the PNE in few only iterations, while the impact of user behavior heterogeneity is evaluated. The introduced framework's consideration of the user risk-aware characteristics and computing uncertainties, results to a sophisticated exploitation of the system resources, which in turn leads to superior users' experienced performance compared to alternative approaches. 
    more » « less
  5. With the explosion of intelligent and latency-sensitive applications such as AR/VR, remote health and autonomous driving, mobile edge computing (MEC) has emerged as a promising solution to mitigate the high end-to-end latency of mobile cloud computing (MCC). However, the edge servers have significantly less computing capability compared to the resourceful central cloud. Therefore, a collaborative cloud-edge-local offloading scheme is necessary to accommodate both computationally intensive and latency-sensitive mobile applications. The coexistence of central cloud, edge servers and the mobile device (MD), forming a multi-tiered heterogeneous architecture, makes the optimal application deployment very challenging especially for multi-component applications with component dependencies. This paper addresses the problem of energy and latency efficient application offloading in a collaborative cloud-edgelocal environment. We formulate a multi-objective mixed integer linear program (MILP) with the goal of minimizing the systemwide energy consumption and application end-to-end latency. An approximation algorithm based on LP relaxation and rounding is proposed to address the time complexity. We demonstrate that our approach outperforms existing strategies in terms of application request acceptance ratio, latency and system energy consumption. 
    more » « less