skip to main content


Title: Antiferromagnetic proximity coupling between semiconductor quantum emitters in WSe 2 and van der Waals ferromagnets
van der Waals ferromagnets have gained significant interest due to their unique ability to provide magnetic response even at the level of a few monolayers. Particularly in combination with 2D semiconductors, such as the transition metal dichalcogenide WSe 2 , one can create heterostructures that feature unique magneto-optical response in the exciton emission through the magnetic proximity effect. Here we use 0D quantum emitters in WSe 2 to probe for the ferromagnetic response in heterostructures with Fe 3 GT and Fe 5 GT ferromagnets through an all-optical read-out technique that does not require electrodes. The spectrally narrow spin-doublet of the WSe 2 quantum emitters allowed to fully resolve the hysteretic magneto-response in the exciton emission, revealing the characteristic signature of both ferro- and antiferromagnetic proximity coupling that originates from the interplay among Fe 3 GT or Fe 5 GT, a thin surface oxide, and the spin doublets of the quantum emitters. Our work highlights the utility of 0D quantum emitters for probing interface magnetic dipoles in vdW heterostructures with high precision. The observed hysteretic magneto response in the exciton emission of quantum emitters adds further new degrees of freedom for spin and g -factor manipulation of quantum states.  more » « less
Award ID(s):
1809235
NSF-PAR ID:
10288191
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Nanoscale
Volume:
13
Issue:
2
ISSN:
2040-3364
Page Range / eLocation ID:
832 to 841
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Chiral single photons are highly sought to enhance encoding capacities or enable propagation-dependent routing in nonreciprocal devices. Unfortunately, most semiconductor quantum emitters (QEs) produce only linear polarized photons unless external magnets are applied. Magnetic proximity coupling utilizing 2D ferromagnets promises to make bulky external fields obsolete. Here we directly grow Fe-doped MoS2(Fe:MoS2) via chemical vapor deposition that displays pronounced hard ferromagnetic properties even in monolayer form. This approach with monolayer ferromagnets enables full utilization of the strain from the pillar stressor to form QE in WSe2deterministically. The Fe:MoS2/WSe2heterostructures display strong hysteretic magneto-response and high-purity chiral single photons with a circular polarization degree of 92 ± 1% (74% average) without external magnetic fields. Furthermore, the chiral single photons are robust against uncontrolled twist-angle and external stray-fields. This ability to manipulate quantum states and transform linear polarized photons into high-purity chiral photons on-chip enables nonreciprocal device integration in quantum photonics.

     
    more » « less
  2. Abstract

    Here, ultra‐long lifetimes of defect‐trapped single quantum emitters (SQEs) in monolayer WSe2/hBN heterostructures are reported. The lifetimes of these SQEs are approximately 225 ns, more than two orders of magnitude larger than what has been previously reported for defect‐trapped excitons in WSe2. These SQEs consist of co‐linearly polarized doublet peaks with a fine structure splitting of 0.45 meV. Second‐order correlation measurements show antibunched single‐photon emission with a g(2)(0) value of ≈0.13. Through numerical analysis and modeling, it is shown how such long‐lifetime single emitters can arise from bright and dark exciton coupling in antisite defects on the W sites. Additionally, high‐quality single‐photon emission over a wide range of lifetimes—from 2 ns to over 200 ns—is also reported, suggesting a variety of other possible defect structures present. The flexibility to generate high fidelity single‐photon emission, over a wide range of lifetimes in a single material system, has potential in many optical quantum computing applications from high‐bit‐rate single‐photon sources to quantum memory devices.

     
    more » « less
  3. Abstract

    The capacity to manipulate magnetization in 2D dilute magnetic semiconductors (2D‐DMSs) using light, specifically in magnetically doped transition metal dichalcogenide (TMD) monolayers (M‐dopedTX2, whereM = V, Fe, and Cr;T = W, Mo;X = S, Se, and Te), may lead to innovative applications in spintronics, spin‐caloritronics, valleytronics, and quantum computation. This Perspective paper explores the mediation of magnetization by light under ambient conditions in 2D‐TMD DMSs and heterostructures. By combining magneto‐LC resonance (MLCR) experiments with density functional theory (DFT) calculations, we show that the magnetization can be enhanced using light in V‐doped TMD monolayers (e.g., V‐WS2, V‐WSe2). This phenomenon is attributed to excess holes in the conduction and valence bands, and carriers trapped in magnetic doping states, mediating the magnetization of the semiconducting layer. In 2D‐TMD heterostructures (VSe2/WS2, VSe2/MoS2), the significance of proximity, charge‐transfer, and confinement effects in amplifying light‐mediated magnetism is demonstrated. We attributed this to photon absorption at the TMD layer that generates electron–hole pairs mediating the magnetization of the heterostructure. These findings will encourage further research in the field of 2D magnetism and establish a novel design of 2D‐TMDs and heterostructures with optically tunable magnetic functionalities, paving the way for next‐generation magneto‐optic nanodevices.

     
    more » « less
  4. Abstract We revisit and extend the standard bosonic interpretation of interlayer excitons (ILX) in the moiré potential of twisted heterostructures of transition-metal dichalcogenides. In our experiments, we probe a high quality MoSe 2 /WSe 2 van der Waals bilayer heterostructure via density-dependent photoluminescence spectroscopy and reveal strongly developed, unconventional spectral shifts of the emergent moiré exciton resonances. The observation of saturating blueshifts of successive exciton resonances allow us to explain their physics in terms of a model utilizing fermionic saturable absorbers. This approach is strongly inspired by established quantum-dot models, which underlines the close analogy of ILX trapped in pockets of the moiré potential, and quantum emitters with discrete eigenstates. 
    more » « less
  5. Abstract Magneto-optical (MO) effects, viz. magnetically induced changes in light intensity or polarization upon reflection from or transmission through a magnetic sample, were discovered over a century and a half ago. Initially they played a crucially relevant role in unveiling the fundamentals of electromagnetism and quantum mechanics. A more broad-based relevance and wide-spread use of MO methods, however, remained quite limited until the 1960s due to a lack of suitable, reliable and easy-to-operate light sources. The advent of Laser technology and the availability of other novel light sources led to an enormous expansion of MO measurement techniques and applications that continues to this day (see section 1). The here-assembled roadmap article is intended to provide a meaningful survey over many of the most relevant recent developments, advances, and emerging research directions in a rather condensed form, so that readers can easily access a significant overview about this very dynamic research field. While light source technology and other experimental developments were crucial in the establishment of today’s magneto-optics, progress also relies on an ever-increasing theoretical understanding of MO effects from a quantum mechanical perspective (see section 2), as well as using electromagnetic theory and modelling approaches (see section 3) to enable quantitatively reliable predictions for ever more complex materials, metamaterials, and device geometries. The latest advances in established MO methodologies and especially the utilization of the MO Kerr effect (MOKE) are presented in sections 4 (MOKE spectroscopy), 5 (higher order MOKE effects), 6 (MOKE microscopy), 8 (high sensitivity MOKE), 9 (generalized MO ellipsometry), and 20 (Cotton–Mouton effect in two-dimensional materials). In addition, MO effects are now being investigated and utilized in spectral ranges, to which they originally seemed completely foreign, as those of synchrotron radiation x-rays (see section 14 on three-dimensional magnetic characterization and section 16 on light beams carrying orbital angular momentum) and, very recently, the terahertz (THz) regime (see section 18 on THz MOKE and section 19 on THz ellipsometry for electron paramagnetic resonance detection). Magneto-optics also demonstrates its strength in a unique way when combined with femtosecond laser pulses (see section 10 on ultrafast MOKE and section 15 on magneto-optics using x-ray free electron lasers), facilitating the very active field of time-resolved MO spectroscopy that enables investigations of phenomena like spin relaxation of non-equilibrium photoexcited carriers, transient modifications of ferromagnetic order, and photo-induced dynamic phase transitions, to name a few. Recent progress in nanoscience and nanotechnology, which is intimately linked to the achieved impressive ability to reliably fabricate materials and functional structures at the nanoscale, now enables the exploitation of strongly enhanced MO effects induced by light–matter interaction at the nanoscale (see section 12 on magnetoplasmonics and section 13 on MO metasurfaces). MO effects are also at the very heart of powerful magnetic characterization techniques like Brillouin light scattering and time-resolved pump-probe measurements for the study of spin waves (see section 7), their interactions with acoustic waves (see section 11), and ultra-sensitive magnetic field sensing applications based on nitrogen-vacancy centres in diamond (see section 17). Despite our best attempt to represent the field of magneto-optics accurately and do justice to all its novel developments and its diversity, the research area is so extensive and active that there remains great latitude in deciding what to include in an article of this sort, which in turn means that some areas might not be adequately represented here. However, we feel that the 20 sections that form this 2022 magneto-optics roadmap article, each written by experts in the field and addressing a specific subject on only two pages, provide an accurate snapshot of where this research field stands today. Correspondingly, it should act as a valuable reference point and guideline for emerging research directions in modern magneto-optics, as well as illustrate the directions this research field might take in the foreseeable future. 
    more » « less