skip to main content

Title: Adding a “Design Thread” to Electrical and Computer Engineering Degree Programs: Motivation, Implementation, and Evaluation
This article details the multi-year process of adding a “design thread” to our department’s electrical and computer engineering curricula. We use the conception of a “thread” to mean a sequence of courses that extend unbroken across each year of the undergraduate curriculum. The design thread includes a project-based introduction to the discipline course in the first year, a course in the second year focusing on measurement and fabrication, a course in the third year to frame technical problems in societal challenges, and culminates with our two-semester, client-driven fourth-year capstone design sequence. The impetus to create a design thread arose from preparation for an ABET visit where we identified a need for more “systems thinking” within the curriculum, particularly system decomposition and modularity; difficulty in having students make engineering evaluations of systems based on data; and students’ difficulty transferring skills in testing, measurement, and evaluation from in-class lab scenarios to more independent work on projects. We also noted that when working in teams, students operated more collectively than collaboratively. In other words, rather than using task division and specialization to carry out larger projects, students addressed all problems collectively as a group. This paper discusses the process through which faculty developed more » a shared conception of design to enable coherent changes to courses in the four year sequence and the political and practical compromises needed to create the design thread. To develop a shared conception of design faculty explored several frameworks that emphasized multiple aspects of design. Course changes based on elements of these frameworks included introducing design representations such as block diagrams to promote systems thinking in the first year and consistently utilizing representations throughout the remainder of the four year sequence. Emphasizing modularity through representations also enabled introducing aspects of collaborative teamwork. While students are introduced broadly to elements of the design framework in their first year, later years emphasize particular aspects. The second year course focuses on skills in fabrication and performance measurement while the third year course emphasizes problem context and users, in an iterative design process. The client-based senior capstone experience integrates all seven aspects of our framework. On the political and organizational side implementing the design thread required major content changes in the department’s introductory course, and freeing up six credit-hour equivalents, one and a half courses, in the curriculum. The paper discusses how the ABET process enabled these discussions to occur, other curricular changes needed to enable the design thread to be implemented, and methods which enabled the two degree programs to align faculty motivation, distribute the workload, and understand the impact the curricular changes had on student learning. « less
Authors:
; ;
Award ID(s):
2022271
Publication Date:
NSF-PAR ID:
10288341
Journal Name:
ASEE annual conference exposition
ISSN:
2153-5965
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper reports on the development of a second-year design course intended to support student design capabilities in a coherent four-year design thread across an Electrical and Computer Engineering (ECE) curriculum. At Bucknell University students take four years of design starting by building an Internet of Things (IoT) sensor module in first year, a robust IoT product in the second year, using the product to address societal challenges in the third year, followed by a culminating capstone experience in the fourth year. While the first year introduces students broadly to the ECE curriculum, the second-year course reported here is designed to provide students’ abilities in electronic device fabrication and test and measurement, areas students at Bucknell have had little previous exposure to. This course is designed to anchor the remainder of the design sequence by giving all students the capability to independently fabricate and test robust electronic devices. The second-year course has students individually build an IoT appliance—the Digital / Analog Modular Neopixel-based Electronic Display, or DAMNED project—by going through twelve sequential steps of design from simulation through PCB layout, device and enclosure fabrication, to application development. Because this course is most students’ first encounter with electronic fabrication and testmore »and measurement techniques, the course has students build the project in twelve steps. Each weekly step is heavily scaffolded to allow students to work independently out of class. The paper discusses how such scaffolding is supported through design representations such as block diagrams, pre-class preparation, rapid feedback, and the use of campus makerspaces and educational software tools. The paper also shares results of making iterative improvement to the course structure using action research, and early indications that students are able transfer skills into subsequent design courses.« less
  2. Many university engineering programs require their students to complete a senior capstone experience to equip them with the knowledge and skills they need to succeed after graduation. Such capstone experiences typically integrate knowledge and skills learned cumulatively in the degree program, often engaging students in projects outside of the classroom. As part of an initiative to completely transform the civil engineering undergraduate program at Clemson University, a capstone-like course sequence is being incorporated into the curriculum during the sophomore year. Funded by a grant from the National Science Foundation’s Revolutionizing Engineering Departments (RED) program, this departmental transformation (referred to as the Arch initiative) is aiming to develop a culture of adaptation and a curriculum support for inclusive excellence and innovation to address the complex challenges faced by our society. Just as springers serve as the foundation stones of an arch, the new courses are called “Springers” because they serve as the foundations of the transformed curriculum. The goal of the Springer course sequence is to expose students to the “big picture” of civil engineering while developing student skills in professionalism, communication, and teamwork through real-world projects and hands-on activities. The expectation is that the Springer course sequence will allow facultymore »to better engage students at the beginning of their studies and help them understand how future courses contribute to the overall learning outcomes of a degree in civil engineering. The Springer course sequence is team-taught by faculty from both civil engineering and communication, and exposes students to all of the civil engineering subdisciplines. Through a project-based learning approach, Springer courses mimic capstone in that students work on a practical application of civil engineering concepts throughout the semester in a way that challenges students to incorporate tools that they will build on and use during their junior and senior years. In the 2019 spring semester, a pilot of the first of the Springer courses (Springer 1; n=11) introduced students to three civil engineering subdisciplines: construction management, hydrology, and transportation. The remaining subdisciplines will be covered in a follow-on Springer 2 pilot.. The project for Springer 1 involved designing a small parking lot for a church located adjacent to campus. Following initial instruction in civil engineering topics related to the project, students worked in teams to develop conceptual project designs. A design charrette allowed students to interact with different stakeholders to assess their conceptual designs and incorporate stakeholder input into their final designs. The purpose of this paper is to describe all aspects of the Springer 1 course, including course content, teaching methods, faculty resources, and the design and results of a Student Assessment of Learning Gains (SALG) survey to assess students’ learning outcomes. An overview of the Springer 2 course is also provided. The feedback from the SALG indicated positive attitudes towards course activities and content, and that students found interaction with project stakeholders during the design charrette especially beneficial. Challenges for full scale implementation of the Springer course sequence as a requirement in the transformed curriculum are also discussed.« less
  3. ABET lists the ability to communicate in writing to both technical and non-technical audiences as a required outcome for baccalaureate engineering students [1]. From emails and memos to formal reports, the ability to communicate is vital to the engineering profession. This Work in Progress paper describes research being done as part of an NSF-funded project, Writing Assignment Tutor Training in STEM (WATTS). The method is designed to improve feedback writing tutors without technical backgrounds give to engineering students on technical reports. Students in engineering programs have few opportunities to develop their writing skills. Usually, composition courses are part of the general education curriculum. Students often see these courses as unrelated to their majors and careers [2]. Ideally, writing support should be integrated throughout a program. Since WATTs capitalizes on existing resources and requires only a modest amount of faculty time, it could enable engineering programs to provide additional writing support to students in multiple courses and provide a bridge for them to see the connection between writing concepts learned in composition courses and their technical reports. WATTS was developed in a junior-level circuit analysis course, where students were completing the same lab and writing individual reports. This paper focuses onmore »a senior capstone course that utilizes concepts taught in previous courses to prepare students to complete an independent team research or design project. Projects are unique, usually based on the needs of an industrial sponsor, and are completed over three consecutive semesters. Each semester, teams write a report based on their activities during that semester, with a comprehensive report in the final semester. The multi-semester nature of the senior design project provides an opportunity for the researchers to chart longitudinal changes from the first to the students’ third semester interactions with the writing tutors, assessing the value of an integrated approach. The program’s impact on students’ attitudes toward revision and the value of tutoring, as well as the impact on tutors, are part of the assessment plan. The program hopes to change the students’ focus from simply presenting their results to communicating them. The goals of the project are to demonstrate to students that revision is essential to the writing process and that feedback can improve their written communication abilities. The expectation is that after graduation they will continue to seek critical feedback as part of their career growth. Surveys given to both students and tutors revealed that the sessions were taken seriously by the students and that meaningful collaboration was achieved between them. An evaluation of the writing in pre-tutored to final submitted report shows statistically significant improvement. Preliminary and current results will be included within the paper. [1] Criteria for Accrediting Engineering Technology Programs, ABET, Baltimore, MD., 2020, p.5, ETAC Criteria (abet.org) [2] Bergmann, L. S. and Zepernick, J., “Disciplinarity and Transfer: Students’ Perceptions of Learning to Write,” Writing Program Administration, 31, Fall/Winter 2007.« less
  4. This is a research study that investigates the range of conceptions of prototyping in engineering design courses through exploring the conceptions and implementations from the instructors’ perspective. Prototyping is certainly an activity central to engineering design. The context of prototyping to support engineering education and practice has a range of implementations in an undergraduate engineering curriculum, from first-year engineering to capstone engineering design experiences. Understanding faculty conceptions’ of the reason, purpose, and place of prototyping can help illustrate how teaching and learning of the engineering design process is realistically implemented across a curriculum and how students are prepared for work practice. We seek to understand, and consequently improve, engineering design teaching and learning, through transformations of practice that are based on engineering education research. In this exploratory study, we interviewed three faculty members who teach engineering design in project-based learning courses across the curriculum of an undergraduate engineering program. This builds on related work done by the authors that previously investigated undergraduate engineering students’ conceptions of prototyping activities and process. With our instructor participants, a similar interview protocol was followed through semi-structured qualitative interviews. Data analysis has been undertaken through an emerging thematic analysis of these interview transcripts. Early findingsmore »characterize the focus on teaching the design process; the kind of feedback that the educators provide on students’ prototypes; students’ behavior while working on design projects; and educators’ perspectives on the design course. Understanding faculty conceptions with students’ conceptions of prototyping can shed light on the efficacy of using prototyping as an authentic experience in design teaching and learning. In project-based learning courses, particular issues of authenticity and assessment are under consideration, especially across the curriculum. More specifically, “proportions of problems” inform “problem solving” as one of the key characteristics in design thinking, teaching and learning. More attention to prototyping as part of the study of problem-solving processes can be useful to enhance understanding of the impact of instructional design. Challenges for teaching engineering design exist, and may be due to difficulties in framing design problems, recognizing what expertise students possess, and assessing their expertise to help them reach their goals, all at an appropriate place and ambiguity with student learning goals. Initial findings show that prototyping activities can help students become more reflective on their design. Scaffolded activities in prototyping can support self-regulated learning by students. The range of support and facilities, such as campus makerspaces, may also help students and instructors alike develop industry-ready engineering students.« less
  5. As part of a National Science Foundation-funded initiative to completely transform the civil engineering undergraduate program at Clemson University, a capstone-like course sequence is being incorporated into the curriculum during the sophomore year. Clemson’s NSF Revolutionizing Engineering Departments (RED) program is called the Arch Initiative. Just as springers serve as the foundation stones of an arch, the new courses are called “Springers” because they serve as the foundations of the transformed curriculum. Through a project-based learning approach, Springer courses mimic the senior capstone experience by immersing students in a semester-long practical application of civil engineering, exposing them to concepts and tools in a way that challenges students to develop new knowledge that they will build on and use during their junior and senior years. In the 2019 spring semester, a pilot of the first Springer course introduced students to three civil engineering sub-disciplines: construction management, water resources, and transportation. The remaining sub-disciplines are covered in a follow-on Springer 2 pilot. The purpose of this paper is to describe all aspects of the Springer 1 course, including course content, teaching methods, faculty resources, and the design and results of a Student Assessment of Learning Gains (SALG) survey to assess students’ learningmore »outcomes. The feedback from the SALG indicated positive attitudes towards course activities and content. Challenges for full-scale implementation of the Springer course sequence as a requirement in the transformed curriculum are also discussed.« less