skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Supporting Design Capabilities Across the ECE Curriculum, the Role of DAMNED Projects
This paper reports on the development of a second-year design course intended to support student design capabilities in a coherent four-year design thread across an Electrical and Computer Engineering (ECE) curriculum. At Bucknell University students take four years of design starting by building an Internet of Things (IoT) sensor module in first year, a robust IoT product in the second year, using the product to address societal challenges in the third year, followed by a culminating capstone experience in the fourth year. While the first year introduces students broadly to the ECE curriculum, the second-year course reported here is designed to provide students’ abilities in electronic device fabrication and test and measurement, areas students at Bucknell have had little previous exposure to. This course is designed to anchor the remainder of the design sequence by giving all students the capability to independently fabricate and test robust electronic devices. The second-year course has students individually build an IoT appliance—the Digital / Analog Modular Neopixel-based Electronic Display, or DAMNED project—by going through twelve sequential steps of design from simulation through PCB layout, device and enclosure fabrication, to application development. Because this course is most students’ first encounter with electronic fabrication and test and measurement techniques, the course has students build the project in twelve steps. Each weekly step is heavily scaffolded to allow students to work independently out of class. The paper discusses how such scaffolding is supported through design representations such as block diagrams, pre-class preparation, rapid feedback, and the use of campus makerspaces and educational software tools. The paper also shares results of making iterative improvement to the course structure using action research, and early indications that students are able transfer skills into subsequent design courses.  more » « less
Award ID(s):
2022271
PAR ID:
10356568
Author(s) / Creator(s):
Date Published:
Journal Name:
American Society for Engineering Education Annual Conference and Exhibition
Page Range / eLocation ID:
#36839
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This article details the multi-year process of adding a “design thread” to our department’s electrical and computer engineering curricula. We use the conception of a “thread” to mean a sequence of courses that extend unbroken across each year of the undergraduate curriculum. The design thread includes a project-based introduction to the discipline course in the first year, a course in the second year focusing on measurement and fabrication, a course in the third year to frame technical problems in societal challenges, and culminates with our two-semester, client-driven fourth-year capstone design sequence. The impetus to create a design thread arose from preparation for an ABET visit where we identified a need for more “systems thinking” within the curriculum, particularly system decomposition and modularity; difficulty in having students make engineering evaluations of systems based on data; and students’ difficulty transferring skills in testing, measurement, and evaluation from in-class lab scenarios to more independent work on projects. We also noted that when working in teams, students operated more collectively than collaboratively. In other words, rather than using task division and specialization to carry out larger projects, students addressed all problems collectively as a group. This paper discusses the process through which faculty developed a shared conception of design to enable coherent changes to courses in the four year sequence and the political and practical compromises needed to create the design thread. To develop a shared conception of design faculty explored several frameworks that emphasized multiple aspects of design. Course changes based on elements of these frameworks included introducing design representations such as block diagrams to promote systems thinking in the first year and consistently utilizing representations throughout the remainder of the four year sequence. Emphasizing modularity through representations also enabled introducing aspects of collaborative teamwork. While students are introduced broadly to elements of the design framework in their first year, later years emphasize particular aspects. The second year course focuses on skills in fabrication and performance measurement while the third year course emphasizes problem context and users, in an iterative design process. The client-based senior capstone experience integrates all seven aspects of our framework. On the political and organizational side implementing the design thread required major content changes in the department’s introductory course, and freeing up six credit-hour equivalents, one and a half courses, in the curriculum. The paper discusses how the ABET process enabled these discussions to occur, other curricular changes needed to enable the design thread to be implemented, and methods which enabled the two degree programs to align faculty motivation, distribute the workload, and understand the impact the curricular changes had on student learning. 
    more » « less
  2. Over the last several years the Electrical and Computer Engineering (ECE) program at Bucknell University has established a four-year ‘design thread’ in the curriculum. This six-course sequence utilizes a representational approach, having students frame design challenges through diagrams and drawings before starting to implement solutions. The representations students create provide eight lenses on the design process; several of these lenses capture elements of societal implications and social justice. Within the design course sequence, the third-year particularly emphasizes the larger societal and human contexts of design. A challenge in the third-year course has been having engineering students who are acculturated to quantitative and linear methods of problem solving shift their perspectives to address complex societal topics. In the social sciences such topics are usually described textually with rich qualitative descriptions. In an attempt to engage engineering students, the authors have utilized graphical design representations rather than textual descriptions into the course. Such representations better align with engineering epistemology, potentially making the large body of work in the social sciences more accessible to students. This paper reports on how a particular representation, the system map, has third-year students explore systemic structures and practices that impact design decisions and processes. Students use system maps to identify ways design projects can impact on society in ways that have both positive and potentially negative consequences. Qualitative analysis of student artifacts over five course iterations was used in an action research approach to refine how to effectively integrate system map representations that capture societal issues and address issues of justice. Action research is an iterative methodology that utilizes evidence to improve practice, in this case the improving students’ facility with, and conceptions of, the societal impact of engineering work. This practice-focused paper reports on how system maps can be used in engineering and what supporting practices, e.g. interviews and research, make their use more effective. Ways to utilize system maps specifically, and representations more generally, to connect technical aspects of engineering design to social justice topics and issues are 
    more » « less
  3. Abstract This “work in progress” paper describes a multiyear project to study the development of engineering identity in a chemical and biological engineering program at Montana State University. The project focuses on how engineering identity may be impacted by a series of interventions utilizing subject material in a senior-level capstone design course and has the senior capstone design students serve as peer-mentors to first- and second-year students. A more rapid development of an engineering identity by first- and second-year students is suspected to increase retention and persistence in this engineering program. Through a series of timed interventions scheduled to take place in the first and second year, which includes cohorts that will serve as negative controls (no intervention), we hope to ascertain the following: (1) the extent to which, relative to a control group, exposure to a peer mentor increases a students’ engineering identity development over time compared to those who do not receive peer mentoring and (2) if the quantity and/or timing of the peer interactions impact engineering identity development. While the project includes interventions for both first- and second-year students, this work in progress paper focuses on the experiences of first year freshman as a result of the interventions and their development of an engineering identity over the course of the semester. Early in the fall semester, freshman chemical engineering students enrolled in an introductory chemical engineering course and senior students in a capstone design course were administered a survey which contained a validated instrument to assess engineering identity. The first-year course has 107 students and the senior-level course has 92 students and approximately 50% of the students in both cohorts completed the survey. Mid-semester, after the first-year students were introduced to the concepts of process flow diagrams and material balances in their course, senior design student teams gave presentations about their capstone design projects in the introductory course. The presentations focused on the project goals, design process and highlighted the process flow diagrams. After the presentations, freshman and senior students attended small group dinners as part of a homework assignment wherein the senior students were directed to communicate information about their design projects as well as share their experiences in the chemical engineering program. Dinners occurred overall several days, with up to ten freshman and five seniors attending each event. Freshman students were encouraged to use this time to discover more about the major, inquire about future course work, and learn about ways to enrich their educational experience through extracurricular and co-curricular activities. Several weeks after the dinner experience, senior students returned to give additional presentations to the freshman students to focus on the environmental and societal impacts of their design projects. We report baseline engineering identity in this paper. 
    more » « less
  4. The Internet of Things (IoT) technologies can enable products to become smarter through sensing their environment, analyzing lots of data (big data), and connecting to the Internet to allow for the exchange of data. As smart products become ubiquitous, they provide enormous opportunities for scientists and engineers to invent new products and build interconnected systems of vast scale. As a result, the STEM workforce demands are shifting rapidly. Mechanical engineers will play a significant role in innovating and designing smart products and manufacturing systems of the Industry 4.0 revolution. However, the current mechanical engineering curriculum has not kept pace. In this paper, we present an overview of a new curriculum along with the design of an inexpensive smart flowerpot device that was used as an instructional tool throughout the curriculum. We provide details about how two curriculum modules were implemented in the first offering of the course. Preliminary assessment results from the first offering of the course are discussed. 
    more » « less
  5. The emergence of the Internet of Things (IoT) has had a transformative effect on our society and has inspired educators to develop innovative approaches to educate the next generation of Computer Science (CS) professionals. This paper presents the design and development of an introductory IoT course suitable for grades 9-12 Computer Science classes. Information about the course content, intended outcomes, and evaluation techniques are presented. The course was introduced in 2 high schools in the US. The course includes a capstone project where the students identified a real-world problem and developed an IoT-based solution to address it. Formative and summative technical evaluation results are presented and suggest that the course provided an effective learning experience for students. The information presented here provides guiding principles for developing an IoT-based curriculum geared towards 9-12 education while also exposing the students to CS fundamental. 
    more » « less