skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: In Silico Finite Element Analysis of the Foot Ankle Complex Biomechanics: A Literature Review
Abstract Computational approaches, especially finite element analysis (FEA), have been rapidly growing in both academia and industry during the last few decades. FEA serves as a powerful and efficient approach for simulating real-life experiments, including industrial product development, machine design, and biomedical research, particularly in biomechanics and biomaterials. Accordingly, FEA has been a “go-to” high biofidelic software tool to simulate and quantify the biomechanics of the foot–ankle complex, as well as to predict the risk of foot and ankle injuries, which are one of the most common musculoskeletal injuries among physically active individuals. This paper provides a review of the in silico FEA of the foot–ankle complex. First, a brief history of computational modeling methods and finite element (FE) simulations for foot–ankle models is introduced. Second, a general approach to build an FE foot and ankle model is presented, including a detailed procedure to accurately construct, calibrate, verify, and validate an FE model in its appropriate simulation environment. Third, current applications, as well as future improvements of the foot and ankle FE models, especially in the biomedical field, are discussed. Finally, a conclusion is made on the efficiency and development of FEA as a computational approach in investigating the biomechanics of the foot–ankle complex. Overall, this review integrates insightful information for biomedical engineers, medical professionals, and researchers to conduct more accurate research on the foot–ankle FE models in the future.  more » « less
Award ID(s):
1827652
PAR ID:
10288389
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Biomechanical Engineering
Volume:
143
Issue:
9
ISSN:
0148-0731
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Though the rabbit is a common animal model in musculoskeletal research, there are very limited data reported on healthy rabbit biomechanics. Our objective was to quantify the normative hindlimb biomechanics (kinematics and kinetics) of six New Zealand White rabbits (three male, three female) during the stance phase of gait. We measured biomechanics by synchronously recording sagittal plane motion and ground contact pressure using a video camera and pressure-sensitive mat, respectively. Both foot angle ( i.e ., angle between foot and ground) and ankle angle curves were unimodal. The maximum ankle dorsiflexion angle was 66.4 ± 13.4° (mean ± standard deviation across rabbits) and occurred at 38% stance, while the maximum ankle plantarflexion angle was 137.2 ± 4.8° at toe-off (neutral ankle angle = 90 degrees). Minimum and maximum foot angles were 17.2 ± 6.3° at 10% stance and 123.3 ± 3.6° at toe-off, respectively. The maximum peak plantar pressure and plantar contact area were 21.7 ± 4.6% BW/cm 2 and 7.4 ± 0.8 cm 2 respectively. The maximum net vertical ground reaction force and vertical impulse, averaged across rabbits, were 44.0 ± 10.6% BW and 10.9 ± 3.7% BW∙s, respectively. Stance duration (0.40 ± 0.15 s) was statistically significantly correlated ( p < 0.05) with vertical impulse (Spearman’s ρ = 0.76), minimum foot angle ( ρ = −0.58), plantar contact length ( ρ = 0.52), maximum foot angle ( ρ = 0.41), and minimum foot angle ( ρ = −0.30). Our study confirmed that rabbits exhibit a digitigrade gait pattern during locomotion. Future studies can reference our data to quantify the extent to which clinical interventions affect rabbit biomechanics. 
    more » « less
  2. Abstract This study presents a comprehensive finite element (FE) model for the human wrist, constructed from a CT scan of a 68-year-old male (type 1 wrist). This model intricately captures the bone and soft tissue geometries to study the biomechanics of wrist axial loading through tendon-driven simulations and grasping biomechanics using metacarpal loads. Validation is carried out by assessing the radial and ulnar axial loading distribution, radiocarpal articulation contact patterns, and other standard finite element metrics. The results show radial transmission of the load, consistent with results from wrist finite element models conducted in the last decade and other experimental studies. Our results confirm the model's efficacy in reproducing key known biomechanical aspects, laying the groundwork for future investigations into ongoing wrist biomechanics challenges and pathology mechanism studies. 
    more » « less
  3. The diaphragm is a crucial muscle in respiration, creating the pressure gradients necessary for inhalation. This thesis focuses on a computational methodology to reconstruct the diaphragm’s geometry using CT imaging and simulate its biomechanical behavior under physiological loading via Finite Element Analysis (FEA). ITK-SNAP was used for medical image segmentation, CATIA V5 for 3D reconstruction, and ANSYS for simulation under various pressure scenarios. The reconstructed diaphragm model was validated against anatomical landmarks and literature-based deformation ranges, showing good agreement. The proposed workflow provides a robust approach for modeling soft tissue biomechanics. 
    more » « less
  4. The stem-group euarthropodAnomalocaris canadensisis one of the largest Cambrian animals and is often considered the quintessential apex predator of its time. This radiodont is commonly interpreted as a demersal hunter, responsible for inflicting injuries seen in benthic trilobites. However, controversy surrounds the ability ofA. canadensisto use its spinose frontal appendages to masticate or even manipulate biomineralized prey. Here, we apply a new integrative computational approach, combining three-dimensional digital modelling, kinematics, finite-element analysis (FEA) and computational fluid dynamics (CFD) to rigorously analyse anA. canadensisfeeding appendage and test its morphofunctional limits. These models corroborate a raptorial function, but expose inconsistencies with a capacity for durophagy. In particular, FEA results show that certain parts of the appendage would have experienced high degrees of plastic deformation, especially at the endites, the points of impact with prey. The CFD results demonstrate that outstretched appendages produced low drag and hence represented the optimal orientation for speed, permitting acceleration bursts to capture prey. These data, when combined with evidence regarding the functional morphology of its oral cone, eyes, body flaps and tail fan, suggest thatA. canadensiswas an agile nektonic predator that fed on soft-bodied animals swimming in a well-lit water column above the benthos. The lifestyle ofA. canadensisand that of other radiodonts, including plausible durophages, suggests that niche partitioning across this clade influenced the dynamics of Cambrian food webs, impacting on a diverse array of organisms at different sizes, tiers and trophic levels. 
    more » « less
  5. null (Ed.)
    This study presents a computationally cost-effective modeling approach for a switched reluctance machine (SRM) towards predicting vibration and acoustic noise. In the proposed approach, the SRM is modeled using Finite Element (FE) software for capturing magnetic snapshots from static simulations. Using an advanced field reconstruction method (FRM), these snapshots are used to develop basis functions to estimate magnetic fields under any arbitrary stator excitation and at any desired rotor position. This method includes magnetic properties of the machine and can estimate flux density at once instead of partially predicting it. The vibration model is built in FE software while the acoustic noise is predicted using the analytical method. The proposed study can significantly reduce the computational time for vibration and noise analysis with decent accuracy. Dynamic simulation by finite-element analysis (FEA) software and experimental verification have been carried out to verify the effectiveness of the proposed hybrid model. 
    more » « less