The objective of this paper is to demonstrate the flexure properties of ABS plastic in a 3D printed object as a process to enable embedded pressure sensing capabilities. Developing the potential for non-static 3D parts broadens the scope of the fused deposition modeling (FDM) process to include printing ‘smart’ objects that utilize intrinsic material properties to act as microphones, load sensors, accelerometers, etc. In order to demonstrate a strain-based pressure transducer, strain gauges were embedded either directly on top or in the middle of a flexible ABS diaphragm. Securing a strain gage directly on top of the diaphragm traced a reference pressure more closely than diaphragms with the strain gage embedded halfway into the diaphragm. To prevent temperature-related drift, an additional strain gage was suspended above the secured gage, inside the 3D printed cavity. The additional gage allowed for a half-bridge circuit in lieu of a quarter-bridge circuit, which minimized drift due to temperature change. The ABS diaphragm showed no significant signs of elastic hysteresis or nonlinear buckling. When sealed with 100% acetone, the diaphragm leaked ∼50x slower than as-printed sensors. After pressurizing and depressurizing the devices multiple times, they output pressure readouts that were consistent and repeatable for any given pressure within the operational range of 0 to 7psi. The repeatability of each of the final generation sensors indicates that ‘smart’ objects printed using an FDM process could be individually calibrated to make repeatable recordings. This work demonstrates a concept overlooked previous to now — FDM printed objects are not limited to static models, which lack dynamic motion of the part as an element of design. Altering FDM’s bottom-up process can allow for easily embedding sensing elements that result in printed objects which are functional on the mesoscale.
more »
« less
This content will become publicly available on July 22, 2026
Three-Dimensional Modeling and Finite Element Analysis of the Human Diaphragm
The diaphragm is a crucial muscle in respiration, creating the pressure gradients necessary for inhalation. This thesis focuses on a computational methodology to reconstruct the diaphragm’s geometry using CT imaging and simulate its biomechanical behavior under physiological loading via Finite Element Analysis (FEA). ITK-SNAP was used for medical image segmentation, CATIA V5 for 3D reconstruction, and ANSYS for simulation under various pressure scenarios. The reconstructed diaphragm model was validated against anatomical landmarks and literature-based deformation ranges, showing good agreement. The proposed workflow provides a robust approach for modeling soft tissue biomechanics.
more »
« less
- Award ID(s):
- 2151966
- PAR ID:
- 10618554
- Publisher / Repository:
- University of Houston
- Date Published:
- Subject(s) / Keyword(s):
- Three dimensional modeling Finite element analysis Anatomy Solid Mechanics Biomechanics Diaphragm
- Format(s):
- Medium: X
- Institution:
- University of Houston
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
An air-backed diaphragm is the key structure of most dynamic pressure sensors and plays a critical role in determining the sensor performance. Our previous analytical model investigated the influence of air cavity length on the sensitivity and bandwidth. The model found that as the cavity length decreases, the static sensitivity monotonically decreases, and the fundamental natural frequency shows a three-stage trend: increasing in the long-cavity-length range, reaching a plateau value in the medium-cavity-length range, and decreasing in the short-cavity-length range, which cannot be captured by the widely used lumped model. In this study, we conducted the first experimental measurements to validate these findings. Pressure sensors with a circular polyimide diaphragm and a backing air cavity with an adjustable length were designed, fabricated, and characterized, from which the static sensitivities and fundamental natural frequencies were obtained as a function of the cavity length. A further parametric study was conducted by changing the in-plane tension in the diaphragm. A finite element model was developed in COMSOL to investigate the effects of thermoviscous damping and provide validation for the experimental study. Along with the analytical model, this study provides a new understanding and important design guidelines for dynamic pressure sensors with air-backed diaphragms.more » « less
-
The diaphragm is the "respiratory pump;" the muscle that generates pressure to allow ventilation. Diaphragm muscles play a vital function and thus are subjected to continuous mechanical loading. One of its peculiarities is the ability to generate distinct mechanical and biochemical responses depending on the direction through which the mechanical forces applied to it. Contractile forces originated from its contractile components are transmitted to other structural components of its muscle fibers and the surrounding connective tissue. The anisotropic mechanical properties of the diaphragm are translated into biochemical signals that are directionally mechanosensitive by mechanisms that appear to be unique to this muscle. Here, we reviewed the current state of knowledge on the biochemical pathways regulated by mechanical signals emphasizing their anisotropic behavior in the normal diaphragm and analyzed how they are affected in muscular dystrophies.more » « less
-
A comprehensive constitutive theory is developed for the diaphragm. The theory can describe the mechanical properties of the diaphragm muscle in its passive and active states in a unified manner. It also describes the mechanical properties of the diaphragm under mechanical loads in arbitrary directions. The theoretical model involves seven material constants that represent the nonlinear elastic moduli and activation strains of the diaphragm muscle. The values of these material constants are determined by using in vitro experimental data, including that from shear loading experiments which are documented in this work for the first time.more » « less
-
In this work, we describe a benchtop model that recreates the motion and function of the diaphragm using a combination of advanced robotic and organic tissue. First, we build a high-fidelity anthropomorphic model of the diaphragm using thermoplastic and elastomeric material based on clinical imaging data. We then attach pneumatic artificial muscles to this elastomeric diaphragm, pre-programmed to move in a clinically relevant manner when pressurized. By inserting this diaphragm as the divider between two chambers in a benchtop model—one representing the thorax and the other the abdomen—and subsequently activating the diaphragm, we can recreate the pressure changes that cause lungs to inflate and deflate during regular breathing. Insertion of organic lungs in the thoracic cavity demonstrates this inflation and deflation in response to the pressures generated by our robotic diaphragm. By tailoring the input pressures and timing, we can represent different breathing motions and disease states. We instrument the model with multiple sensors to measure pressures, volumes, and flows and display these data in real-time, allowing the user to vary inputs such as the breathing rate and compliance of various components, and so they can observe and measure the downstream effect of changing these parameters. In this way, the model elucidates fundamental physiological concepts and can demonstrate pathology and the interplay of components of the respiratory system. This model will serve as an innovative and effective pedagogical tool for educating students on respiratory physiology and pathology in a user-controlled, interactive manner. It will also serve as an anatomically and physiologically accurate testbed for devices or pleural sealants that reside in the thoracic cavity, representing a vast improvement over existing models and ultimately reducing the requirement for testing these technologies in animal models. Finally, it will act as an impactful visualization tool for educating and engaging the broader community.more » « less
An official website of the United States government
