Detailed electrical and photoemission studies were carried out to probe the chemical nature of the insulating ground state of VO2, whose properties have been an issue for accurate prediction by common theoretical probes. The effects of a systematic modulation of oxygen over-stoichiometry of VO2from 1.86 to 2.44 on the band structure and insulator–metal transitions are presented for the first time. Results offer a different perspective on the temperature- and doping-induced IMT process. They suggest that charge fluctuation in the metallic phase of intrinsic VO2results in the formation of e−and h+pairs that lead to delocalized polaronic V3+and V5+cation states. The metal-to-insulator transition is linked to the cooperative effects of changes in the V–O bond length, localization of V3+electrons at V5+sites, which results in the formation of V4+–V4+dimers, and removal of
Many correlated systems feature an insulator-to-metal transition that can be triggered by an electric field. Although it is known that metallization takes place through filament formation, the details of how this process initiates and evolves remain elusive. We use in-operando optical reflectivity to capture the growth dynamics of the metallic phase with space and time resolution. We demonstrate that filament formation is triggered by nucleation at hotspots, with a subsequent expansion over several decades in time. By comparing three case studies (VO2, V3O5, and V2O3), we identify the resistivity change across the transition as the crucial parameter governing this process. Our results provide a spatiotemporal characterization of volatile resistive switching in Mott insulators, which is important for emerging technologies, such as optoelectronics and neuromorphic computing.
more » « less- PAR ID:
- 10288480
- Publisher / Repository:
- American Association for the Advancement of Science (AAAS)
- Date Published:
- Journal Name:
- Science
- Volume:
- 373
- Issue:
- 6557
- ISSN:
- 0036-8075
- Page Range / eLocation ID:
- p. 907-911
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract screening electrons. It is shown that the nature of phase transitions is linked to the lattice V3+/V5+concentrations of stoichiometric VO2and that electronic transitions are regulated by the interplay between charge fluctuation, charge redistribution, and structural transition.$$\pi^{*}$$ -
Abstract Resistive switching can be achieved in a Mott insulator by applying current/voltage, which triggers an insulator-metal transition (IMT). This phenomenon is key for understanding IMT physics and developing novel memory elements and brain-inspired technology. Despite this, the roles of electric field and Joule heating in the switching process remain controversial. Using nanowires of two archetypal Mott insulators—VO2and V2O3we unequivocally show that a purely non-thermal electrical IMT can occur in both materials. The mechanism behind this effect is identified as field-assisted carrier generation leading to a doping driven IMT. This effect can be controlled by similar means in both VO2and V2O3, suggesting that the proposed mechanism is generally applicable to Mott insulators. The energy consumption associated with the non-thermal IMT is extremely low, rivaling that of state-of-the-art electronics and biological neurons. These findings pave the way towards highly energy-efficient applications of Mott insulators.
-
Abstract Ultrathin (sub-2 nm) Al2O3/MgO memristors were recently developed using an
in vacuo atomic layer deposition (ALD) process that minimizes unintended defects and prevents undesirable leakage current. These memristors provide a unique platform that allows oxygen vacancies (VO) to be inserted into the memristor with atomic precision and study how this affects the formation and rupture of conductive filaments (CFs) during memristive switching. Herein, we present a systematic study on three sets of ultrathin Al2O3/MgO memristors with VO-doping via modular MgO atomic layer insertion into an otherwise pristine insulating Al2O3atomic layer stack (ALS) using anin vacuo ALD. At a fixed memristor thickness of 17 Al2O3/MgO atomic layers (∼1.9 nm), the properties of the memristors were found to be affected by the number and stacking pattern of the MgO atomic layers in the Al2O3/MgO ALS. Importantly, the trend of reduced low-state resistance and the increasing appearance of multi-step switches with an increasing number of MgO atomic layers suggests a direct correlation between the dimension and dynamic evolution of the conducting filaments and the VOconcentration and distribution. Understanding such a correlation is critical to an atomic-scale control of the switching behavior of ultrathin memristors. -
The overarching goal herein is to identify the factors dominating the performance of a‐IGZO‐based memristors. Despite the highest on/off ratio, greater than 104with a preferred minimal set/reset bias achieved from a‐IGZO‐based memristors, it is observed that the switching performance and stability/reliability of the devices is significantly dominated by the
V O··density and metallization material, depending on their reactivity with IGZO. As the first governing factor, ensuring optimalV O··concentration in the switching layer IGZO (V O··/ OOx ratio 24.3% in this study) is crucial to obtain the tractable formation and rupture of conduction filament. Neither higher nor lowerV O··density than the optimized results in detrimental reliability issues, which may be ascribed to an uncontrollable filament in an abundant vacancy environment or a weak conducting path, respectively. As the second governing mechanism determining the memristor performance and reliability, it is suggested that metallization materials need to be carefully selected based on the thermodynamic redox potential and interfacial stability of the metallization material with IGZO. Metallization materials with larger reduction potential and interfacial stability are found to yield higher switching on/off ratio and greater device performance reliability. -
Abstract The Rashba effect has recently attracted great attention owing to emerging physical properties associated with it. The interplay between the Rashba effect and the Zeeman effect, being produced by the exchange field, is expected to broaden the range of these properties and even result in novel phenomena. Here we predict an insulator-to-conductor transition driven by the Rashba–Zeeman effect. We first illustrate this effect using a general Hamiltonian model and show that the insulator-to-conductor transition can be triggered under certain Rashba and exchange-field strengths. Then, we exemplify this phenomenon by considering an Ag2Te/Cr2O3heterostructure, where the electronic structure of the Ag2Te monolayer is affected across the interface by the proximity effect of the Cr2O3antiferromagnetic layer with well-defined surface magnetization. Based on first-principles calculations, we predict that such a system can be driven into either insulating or conducting phase, depending on the surface magnetization orientation of the Cr2O3layer. Our results enrich the Rashba–Zeeman physics and provide useful guidelines for the realization of the insulator-to-conductor transition, which may be interesting for experimental verification.