Integrated astrophotonic spectrometers are integrated variants of conventional free-space spectrometers that offer significantly reduced size, weight, and cost and immunity to alignment errors, and can be readily integrated with other astrophotonic instruments such as nulling interferometers. Current integrated dispersive astrophotonic spectrometers are one-dimensional devices such as arrayed waveguide gratings or planar echelle gratings. These devices have been limited to resolving powers and spectral bins due to having limited total optical delay paths and 1D detector array pixel densities. In this paper, we propose and demonstrate a high-resolution and compact astrophotonic serpentine integrated grating (SIG) spectrometer design based on a 2D dispersive serpentine optical phased array. The SIG device combines a 5.2 cm long folded delay line with grating couplers to create a large optical delay path along two dimensions in a compact integrated device footprint. Analogous to free-space crossed-dispersion high-resolution spectrometers, the SIG spectrometer maps spectral content to a 2D wavelength-beam-steered folded-raster emission pattern focused onto a 2D detector array. We demonstrate a SIG spectrometer with resolving power and spectral bins, which are approximately an order of magnitude higher than previous integrated photonic designs that operate over a wide bandwidth, in a footprint. We measure a Rayleigh resolution of and an operational bandwidth from 1540 nm to 1650 nm. Finally, we discuss refinements of the SIG spectrometer that improve its resolution, bandwidth, and throughput. These results show that SIG spectrometer technology provides a path towards miniaturized, high-resolution spectrometers for applications in astronomy and beyond.
more »
« less
Fourier-basis structured illumination imaging with an array of integrated optical phased arrays
Active imaging and structured illumination originated in “bulk” optical systems: free-space beams controlled with lenses, spatial light modulators, gratings, and mirrors to structure the optical diffraction and direct the beams onto the target. Recently, optical phased arrays have been developed with the goal of replacing traditional bulk active imaging systems with integrated optical systems. In this paper, we demonstrate the first array of optical phased arrays forming a composite aperture. This composite aperture is used to implement a Fourier-based structured-illumination imaging system, where moving fringe patterns are projected on a target and a single integrating detector is used to reconstruct the spatial structure of the target from the time variation of the back-scattered light. We experimentally demonstrate proof-of-concept Fourier-basis imaging in 1D using a six-element array of optical phased arrays, which interfere pairwise to sample up to 11 different spatial Fourier components, and reconstruct a 1D delta-function target. This concept addresses a key complexity constraint in scaling up integrated photonic apertures by requiring only elements in a sparse array to produce an image with resolvable spots.
more »
« less
- Award ID(s):
- 1817174
- PAR ID:
- 10288481
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Journal of the Optical Society of America A
- Volume:
- 38
- Issue:
- 10
- ISSN:
- 1084-7529; JOAOD6
- Format(s):
- Medium: X Size: Article No. B19
- Size(s):
- Article No. B19
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Illuminating or imaging samples from a broad angular range is essential in a wide variety of computational 3D imaging and resolution-enhancement techniques, such as optical projection tomography, optical diffraction tomography, synthetic aperture microscopy, Fourier ptychographic microscopy, structured illumination microscopy, photogrammetry, and optical coherence refraction tomography. The wider the angular coverage, the better the resolution enhancement or 3D-resolving capabilities. However, achieving such angular ranges is a practical challenge, especially when approaching or beyond. Often, researchers resort to expensive, proprietary high numerical aperture (NA) objectives or to rotating the sample or source-detector pair, which sacrifices temporal resolution or perturbs the sample. Here, we propose several new strategies for multiangle imaging approaching 4pi steradians using concave parabolic or ellipsoidal mirrors and fast, low rotational inertia scanners, such as galvanometers. We derive theoretically and empirically relations between a variety of system parameters (e.g., NA, wavelength, focal length, telecentricity) and achievable fields of view (FOVs) and importantly show that intrinsic tilt aberrations donotrestrict FOV for many multiview imaging applications, contrary to conventional wisdom. Finally, we present strategies for avoiding spherical aberrations at obliquely illuminated flat boundaries. Our simple designs allow for high-speed multiangle imaging for microscopic, mesoscopic, and macroscopic applications.more » « less
-
Extended depth of focus (EDOF) optics can enable lower complexity optical imaging systems when compared to active focusing solutions. With existing EDOF optics, however, it is difficult to achieve high resolution and high collection efficiency simultaneously. The subwavelength spacing of scatterers in a meta-optic enables the engineering of very steep phase gradients; thus, meta-optics can achieve both a large physical aperture and a high numerical aperture. Here, we demonstrate a fast EDOF meta-optic operating at visible wavelengths, with an aperture of 2 mm and focal range from 3.5 mm to 14.5 mm (286 diopters to 69 diopters), which is a elongation of the depth of focus relative to a standard lens. Depth-independent performance is shown by imaging at a range of finite conjugates, with a minimum spatial resolution of (50.8 cycles/mm). We also demonstrate operation of a directly integrated EDOF meta-optic camera module to evaluate imaging at multiple object distances, a functionality which would otherwise require a varifocal lens.more » « less
-
Amorphous tantala ( ) thin films were deposited by reactive ion beam sputtering with simultaneous low energy assist or bombardment. Under the conditions of the experiment, the as-deposited thin films are amorphous and stoichiometric. The refractive index and optical band gap of thin films remain unchanged by ion bombardment. Around 20% improvement in room temperature mechanical loss and 60% decrease in absorption loss are found in samples bombarded with 100-eV . A detrimental influence from low energy bombardment on absorption loss and mechanical loss is observed. Low energy bombardment removes excess oxygen point defects, while bombardment introduces defects into the tantala films.more » « less
-
Optical nonlinearity plays a pivotal role in quantum information processing using photons, from heralded single-photon sources and coherent wavelength conversion to long-sought quantum repeaters. Despite the availability of strong dipole coupling to quantum emitters, achieving strong bulk optical nonlinearity is highly desirable. Here, we realize quantum nanophotonic integrated circuits in thin-film InGaP with, to our knowledge, a record-high ratio of between the single-photon nonlinear coupling rate ( ) and cavity-photon loss rate. We demonstrate second-harmonic generation with an efficiency of in the InGaP photonic circuit and photon-pair generation via degenerate spontaneous parametric downconversion with an ultrahigh rate exceeding 27.5 MHz/µW—an order of magnitude improvement of the state of the art—and a large coincidence-to-accidental ratio up to . Our work shows InGaP as a potentially transcending platform for quantum nonlinear optics and quantum information applications.more » « less
An official website of the United States government
