Thin-film lithium-niobate-on-insulator (LNOI) has emerged as a superior integrated-photonics platform for linear, nonlinear, and electro-optics. Here we combine quasi-phase-matching, dispersion engineering, and tight mode confinement to realize nonlinear parametric processes with both high efficiency and wide wavelength tunability. On a millimeter-long, Z-cut LNOI waveguide, we demonstrate efficient ( ) and highly tunable ( ) second-harmonic generation from 1530 to 1583 nm by type-0 quasi-phase-matching. Our technique is applicable to optical harmonic generation, quantum light sources, frequency conversion, and many other photonic information processes across visible to mid-IR spectral bands.
more »
« less
InGaP quantum nanophotonic integrated circuits with 1.5% nonlinearity-to-loss ratio
Optical nonlinearity plays a pivotal role in quantum information processing using photons, from heralded single-photon sources and coherent wavelength conversion to long-sought quantum repeaters. Despite the availability of strong dipole coupling to quantum emitters, achieving strong bulk optical nonlinearity is highly desirable. Here, we realize quantum nanophotonic integrated circuits in thin-film InGaP with, to our knowledge, a record-high ratio of between the single-photon nonlinear coupling rate ( ) and cavity-photon loss rate. We demonstrate second-harmonic generation with an efficiency of in the InGaP photonic circuit and photon-pair generation via degenerate spontaneous parametric downconversion with an ultrahigh rate exceeding 27.5 MHz/µW—an order of magnitude improvement of the state of the art—and a large coincidence-to-accidental ratio up to . Our work shows InGaP as a potentially transcending platform for quantum nonlinear optics and quantum information applications.
more »
« less
- Award ID(s):
- 1839177
- PAR ID:
- 10369322
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optica
- Volume:
- 9
- Issue:
- 2
- ISSN:
- 2334-2536
- Format(s):
- Medium: X Size: Article No. 258
- Size(s):
- Article No. 258
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We present a compact heterodyne laser interferometer developed for high-sensitivity displacement sensing applications. This interferometer consists of customized prisms and wave plates assembled as a quasi-monolithic unit to realize a miniaturized system. The interferometer design adopts a common-mode rejection scheme to provide a high rejection ratio to common environmental noise. Experimental tests in vacuum show a displacement sensitivity level of at and as low as above . The prototype unit is in size and weighs , allowing subsequent integration in compact systems.more » « less
-
We report on spectroscopic measurements on the transition in neutral europium-151 and europium-153 at 459.4 nm. The center of gravity frequencies for the 151 and 153 isotopes, reported for the first time in this paper, to our knowledge, were found to be 652,389,757.16(34) MHz and 652,386,593.2(5) MHz, respectively. The hyperfine coefficients for the state were found to be , and , , which all agree with previously published results except for A(153), which shows a small discrepancy. The isotope shift is found to be 3163.8(6) MHz, which also has a discrepancy with previously published results.more » « less
-
The mid-IR spectroscopic properties of doped low-phonon and crystals grown by the Bridgman technique have been investigated. Using optical excitations at and , both crystals exhibited IR emissions at , , , and at room temperature. The mid-IR emission at 4.5 µm, originating from the transition, showed a long emission lifetime of for doped , whereas doped exhibited a shorter lifetime of . The measured emission lifetimes of the state were nearly independent of the temperature, indicating a negligibly small nonradiative decay rate through multiphonon relaxation, as predicted by the energy-gap law for low-maximum-phonon energy hosts. The room temperature stimulated emission cross sections for the transition in doped and were determined to be and , respectively. The results of Judd–Ofelt analysis are presented and discussed.more » « less
-
In this Letter, we present a high extinction ratio and compact on-chip polarization beam splitter (PBS), based on an extreme skin-depth (eskid) waveguide. Subwavelength-scale gratings form an effectively anisotropic metamaterial cladding and introduce a large birefringence. The anisotropic dielectric perturbation of the metamaterial cladding suppresses the TE polarization extinction via exceptional coupling, while the large birefringence efficiently cross-couples the TM mode, thus reducing the coupling length. We demonstrated the eskid-PBS on a silicon-on-insulator platform and achieved an ultra-high extinction ratio PBS ( for TE and for TM) with a compact coupling length ( ). The insertion loss is also negligible ( ). The bandwidth is (30) nm for the TE (TM) extinction ratio . Our ultra-high extinction ratio PBS is crucial in implementing efficient polarization diversity circuits, especially where a high degree of polarization distinguishability is necessary, such as photonic quantum information processing.more » « less
An official website of the United States government
