Type IIb supernovae (SNe IIb) are core-collapse events whose optical spectra show strong hydrogen features that disappear over time, implying that their progenitors were nearly, but not completely, stripped of their hydrogen envelopes prior to core collapse. Thus, compared to hydrogen-rich SNe II, SNe IIb can provide a closer examination of the underlying structure of the progenitor system, particularly during early photospheric phases (less than +70 days relative to max. light). I will present early-time multi-epoch optical spectropolarimetry of several SNe IIb, obtained using the SPOL instrument at the University of Arizona. Using polarization diagnostics provides a way to track structural changes in the depleted hydrogen envelopes of these SNe as deeper layers of helium and other elements emerge and evolve. I find significant temporal polarization increases in the absorption wings of their H and He lines. Some of these line features make "loops" in Stokes Q-U diagrams, suggesting non-axisymmetic structure in the ejecta, perhaps arising from a transient absorbing clump. Furthermore, the majority of these SNe show polarimetric evidence for aspherical explosions along a preferred, or dominant, axis. I discuss the implications these findings have on the 3D geometry of the explosions by comparing the observed polarization to published synthetic spectropolarimetry that models axial symmetry and clump structures in stripped-envelope, core-collapse SNe. This comparative study naturally facilitates a broader discussion around the unresolved question as to what extent this SNe subclass shows common polarization characteristics.
more »
« less
Spectropolarimetric Snapshots of Stripped Envelope Supernovae
Supernovae of Type IIb (SNe IIb) are relatively rare events, constituting roughly 10% of all core-collapse supernovae. However, comparative optical spectroscopy of core-collapse events suggest that SNe IIb represent an important transition from the SNe II to SNe Ib sub-type. SNe IIb progenitors are thought to have been stripped of most, but not all, of their hydrogen envelopes by stellar winds or mass transfer in binary systems. Thus, they provide an opportunity to study the effects of mass-loss on stellar evolution. Spectropolarization signatures of these SNe can provide unique information on the spatial distribution of their ejecta and circumstellar environment/interaction. We present multi-epoch spectropolarimetry of SNe IIb selected from the database of the SNSPOL. The observations were obtained using the SPOL instrument at the University of Arizona telescopes. We analyze the time-dependent spectropolarimetric signatures of the objects in this sample and discuss what these imply about the evolution of the overall geometrical structure of the ejecta and circumstellar material in SNe IIb. These time-dependent "snapshots" provide an important window into stripped-envelope SNe and provide further clues regarding the relationship between SNe IIb and other SNe sub-types.
more »
« less
- Award ID(s):
- 2009996
- PAR ID:
- 10288550
- Date Published:
- Journal Name:
- American Astronomical Society meeting
- Volume:
- 237
- ISSN:
- 2152-887X
- Page Range / eLocation ID:
- 551.02
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Type IIb supernovae (SNe IIb) are core-collapse events whose optical spectra show strong hydrogen features that disappear over time, implying that their progenitors were nearly, but not completely, stripped of their hydrogen envelopes prior to core collapse. Thus, compared to hydrogen-rich SNe II, SNe IIb can provide a closer examination of the underlying structure of the progenitor system, particularly during early photospheric phases (less than +70 days relative to max. light). I will present early-time multi-epoch optical spectropolarimetry of several SNe IIb, obtained using the SPOL instrument at the University of Arizona. Using polarization diagnostics provides a way to track structural changes in the depleted hydrogen envelopes of these SNe as deeper layers of helium and other elements emerge and evolve. I find significant temporal polarization increases in the absorption wings of their H and He lines. Some of these line features make "loops" in Stokes Q-U diagrams, suggesting non-axisymmetic structure in the ejecta, perhaps arising from a transient absorbing clump. Furthermore, the majority of these SNe show polarimetric evidence for aspherical explosions along a preferred, or dominant, axis. I discuss the implications these findings have on the 3D geometry of the explosions by comparing the observed polarization to published synthetic spectropolarimetry that models axial symmetry and clump structures in stripped-envelope, core-collapse SNe. This comparative study naturally facilitates a broader discussion around the unresolved question as to what extent this SNe subclass shows common polarization characteristics.more » « less
-
null (Ed.)ABSTRACT ASASSN-18am/SN 2018gk is a newly discovered member of the rare group of luminous, hydrogen-rich supernovae (SNe) with a peak absolute magnitude of MV ≈ −20 mag that is in between normal core-collapse SNe and superluminous SNe. These SNe show no prominent spectroscopic signatures of ejecta interacting with circumstellar material (CSM), and their powering mechanism is debated. ASASSN-18am declines extremely rapidly for a Type II SN, with a photospheric-phase decline rate of ∼6.0 mag (100 d)−1. Owing to the weakening of H i and the appearance of He i in its later phases, ASASSN-18am is spectroscopically a Type IIb SN with a partially stripped envelope. However, its photometric and spectroscopic evolution shows significant differences from typical SNe IIb. Using a radiative diffusion model, we find that the light curve requires a high synthesized 56Ni mass $$M_{\rm Ni} \sim 0.4\, \rm {M_{\odot }}$$ and ejecta with high kinetic energy Ekin = (7–10) × 1051 erg. Introducing a magnetar central engine still requires $$M_{\rm Ni} \sim 0.3\, \rm {M_{\odot }}$$ and Ekin = 3 × 1051 erg. The high 56Ni mass is consistent with strong iron-group nebular lines in its spectra, which are also similar to several SNe Ic-BL with high 56Ni yields. The earliest spectrum shows ‘flash ionization’ features, from which we estimate a mass-loss rate of $$\dot{M}\approx 2\times 10^{-4} \, \rm \rm {M_{\odot }}\,yr^{-1}$$. This wind density is too low to power the luminous light curve by ejecta–CSM interaction. We measure expansion velocities as high as 17 000 $$\rm {\, km\, s^{-1}}$$ for Hα, which is remarkably high compared to other SNe II. We estimate an oxygen core mass of 1.8–3.4 M⊙ using the [O i] luminosity measured from a nebular-phase spectrum, implying a progenitor with a zero-age main-sequence mass of 19–26 M⊙.more » « less
-
Abstract Many core-collapse supernovae (SNe) with hydrogen-poor and low-mass ejecta, such as ultra-stripped SNe and type Ibn SNe, are observed to interact with dense circumstellar material (CSM). These events likely arise from the core collapse of helium stars that have been heavily stripped by a binary companion and have ejected significant mass during the last weeks to years of their lives. In helium star models run to days before core collapse we identify a range of helium core masses ≈2.5–3M⊙whose envelopes expand substantially due to the helium shell burning while the core undergoes neon and oxygen burning. When modeled in binary systems, the rapid expansion of these helium stars induces extremely high rates of late-stage mass transfer ( ) beginning weeks to decades before core collapse. We consider two scenarios for producing CSM in these systems: either mass transfer remains stable and mass loss is driven from the system in the vicinity of the accreting companion, or mass transfer becomes unstable and causes a common envelope event (CEE) through which the helium envelope is unbound. The ensuing CSM properties are consistent with the CSM masses (∼10−2–1M⊙) and radii (∼1013–1016cm) inferred for ultra-stripped SNe and several type Ibn SNe. Furthermore, systems that undergo a CEE could produce short-period neutron star binaries that merge in less than 100 Myr.more » « less
-
We present the photometric and spectroscopic analysis of five Type Ibn supernovae (SNe): SN 2020nxt, SN 2020taz, SN 2021bbv, SN 2023utc, and SN 2024aej. These events share key observational features and belong to a family of objects similar to the prototypical Type Ibn SN 2006jc. The SNe exhibit rise times of approximately 10 days and peak absolute magnitudes ranging from −16.5 to −19 mag. Notably, SN 2023utc is the faintest Type Ibn SN discovered to date, with an exceptionally lowr-band absolute magnitude of −16.4 mag. The pseudo-bolometric light curves peak at (1 − 10)×1042erg s−1, with total radiated energies on the order of (1 − 10)×1048erg. Spectroscopically, these SNe display a relatively slow spectral evolution. The early spectra are characterised by a hot blue continuum and prominent He Iemission lines. The early spectra also show blackbody temperatures exceeding 10 000 K, with a subsequent decline in temperature during later phases. Narrow He Ilines, which are indicative of unshocked circumstellar material (CSM), show velocities of approximately 1000 km s−1. The spectra suggest that the progenitors of these SNe underwent significant mass loss prior to the explosion, resulting in a He-rich CSM. Our light curve modelling yielded estimates for the ejecta mass (Mej) in the range 1 − 3 M⊙with kinetic energies (EKin) of (0.1 − 1)×1050erg. The inferred CSM mass ranges from 0.2 to 1 M⊙. These findings are consistent with expectations for core collapse events arising from relatively massive envelope-stripped progenitors.more » « less
An official website of the United States government

