skip to main content

Title: Dark Energy Survey year 3 results: point spread function modelling
ABSTRACT We introduce a new software package for modelling the point spread function (PSF) of astronomical images, called piff (PSFs In the Full FOV), which we apply to the first three years (known as Y3) of the Dark Energy Survey (DES) data. We describe the relevant details about the algorithms used by piff to model the PSF, including how the PSF model varies across the field of view (FOV). Diagnostic results show that the systematic errors from the PSF modelling are very small over the range of scales that are important for the DES Y3 weak lensing analysis. In particular, the systematic errors from the PSF modelling are significantly smaller than the corresponding results from the DES year one (Y1) analysis. We also briefly describe some planned improvements to piff that we expect to further reduce the modelling errors in future analyses.
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Award ID(s):
Publication Date:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range or eLocation-ID:
1282 to 1299
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT We present reconstructed convergence maps, mass maps, from the Dark Energy Survey (DES) third year (Y3) weak gravitational lensing data set. The mass maps are weighted projections of the density field (primarily dark matter) in the foreground of the observed galaxies. We use four reconstruction methods, each is a maximum a posteriori estimate with a different model for the prior probability of the map: Kaiser–Squires, null B-mode prior, Gaussian prior, and a sparsity prior. All methods are implemented on the celestial sphere to accommodate the large sky coverage of the DES Y3 data. We compare the methods using realisticmore »ΛCDM simulations with mock data that are closely matched to the DES Y3 data. We quantify the performance of the methods at the map level and then apply the reconstruction methods to the DES Y3 data, performing tests for systematic error effects. The maps are compared with optical foreground cosmic-web structures and are used to evaluate the lensing signal from cosmic-void profiles. The recovered dark matter map covers the largest sky fraction of any galaxy weak lensing map to date.« less
  2. ABSTRACT Determining the distribution of redshifts of galaxies observed by wide-field photometric experiments like the Dark Energy Survey (DES) is an essential component to mapping the matter density field with gravitational lensing. In this work we describe the methods used to assign individual weak lensing source galaxies from the DES Year 3 Weak Lensing Source Catalogue to four tomographic bins and to estimate the redshift distributions in these bins. As the first application of these methods to data, we validate that the assumptions made apply to the DES Y3 weak lensing source galaxies and develop a full treatment of systematicmore »uncertainties. Our method consists of combining information from three independent likelihood functions: self-organizing map p(z) (sompz), a method for constraining redshifts from galaxy photometry; clustering redshifts (WZ), constraints on redshifts from cross-correlations of galaxy density functions; and shear ratios (SRs), which provide constraints on redshifts from the ratios of the galaxy-shear correlation functions at small scales. Finally, we describe how these independent probes are combined to yield an ensemble of redshift distributions encapsulating our full uncertainty. We calibrate redshifts with combined effective uncertainties of σ〈z〉 ∼ 0.01 on the mean redshift in each tomographic bin.« less
  3. Abstract We present measurements of cosmic shear two-point correlation functions (TPCFs) from Hyper Suprime-Cam Subaru Strategic Program (HSC) first-year data, and derive cosmological constraints based on a blind analysis. The HSC first-year shape catalog is divided into four tomographic redshift bins ranging from $z=0.3$ to 1.5 with equal widths of $\Delta z =0.3$. The unweighted galaxy number densities in each tomographic bin are 5.9, 5.9, 4.3, and $2.4\:$arcmin$^{-2}$ from the lowest to highest redshifts, respectively. We adopt the standard TPCF estimators, $\xi _\pm$, for our cosmological analysis, given that we find no evidence of significant B-mode shear. The TPCFs aremore »detected at high significance for all 10 combinations of auto- and cross-tomographic bins over a wide angular range, yielding a total signal-to-noise ratio of 19 in the angular ranges adopted in the cosmological analysis, $7^{\prime }<\theta <56^{\prime }$ for $\xi _+$ and $28^{\prime }<\theta <178^{\prime }$ for $\xi _-$. We perform the standard Bayesian likelihood analysis for cosmological inference from the measured cosmic shear TPCFs, including contributions from intrinsic alignment of galaxies as well as systematic effects from PSF model errors, shear calibration uncertainty, and source redshift distribution errors. We adopt a covariance matrix derived from realistic mock catalogs constructed from full-sky gravitational lensing simulations that fully account for survey geometry and measurement noise. For a flat $\Lambda$ cold dark matter model, we find $S\,_8 \equiv \sigma _8\sqrt{\Omega _{\rm m}/0.3}=0.804_{-0.029}^{+0.032}$, and $\Omega _{\rm m}=0.346_{-0.100}^{+0.052}$. We carefully check the robustness of the cosmological results against astrophysical modeling uncertainties and systematic uncertainties in measurements, and find that none of them has a significant impact on the cosmological constraints.« less
  4. ABSTRACT Measurements of large-scale structure are interpreted using theoretical predictions for the matter distribution, including potential impacts of baryonic physics. We constrain the feedback strength of baryons jointly with cosmology using weak lensing and galaxy clustering observables (3 × 2pt) of Dark Energy Survey (DES) Year 1 data in combination with external information from baryon acoustic oscillations (BAO) and Planck cosmic microwave background polarization. Our baryon modelling is informed by a set of hydrodynamical simulations that span a variety of baryon scenarios; we span this space via a Principal Component (PC) analysis of the summary statistics extracted from these simulations. We showmore »that at the level of DES Y1 constraining power, one PC is sufficient to describe the variation of baryonic effects in the observables, and the first PC amplitude (Q1) generally reflects the strength of baryon feedback. With the upper limit of Q1 prior being bound by the Illustris feedback scenarios, we reach $\sim 20{{\ \rm per\ cent}}$ improvement in the constraint of $S_8=\sigma _8(\Omega _{\rm m}/0.3)^{0.5}=0.788^{+0.018}_{-0.021}$ compared to the original DES 3 × 2pt analysis. This gain is driven by the inclusion of small-scale cosmic shear information down to 2.5 arcmin, which was excluded in previous DES analyses that did not model baryonic physics. We obtain $S_8=0.781^{+0.014}_{-0.015}$ for the combined DES Y1+Planck EE+BAO analysis with a non-informative Q1 prior. In terms of the baryon constraints, we measure $Q_1=1.14^{+2.20}_{-2.80}$ for DES Y1 only and $Q_1=1.42^{+1.63}_{-1.48}$ for DESY1+Planck EE+BAO, allowing us to exclude one of the most extreme AGN feedback hydrodynamical scenario at more than 2σ.« less
  5. ABSTRACT We construct and validate the selection function of the MARD-Y3 galaxy cluster sample. This sample was selected through optical follow-up of the 2nd ROSAT faint source catalogue with Dark Energy Survey year 3 data. The selection function is modelled by combining an empirically constructed X-ray selection function with an incompleteness model for the optical follow-up. We validate the joint selection function by testing the consistency of the constraints on the X-ray flux–mass and richness–mass scaling relation parameters derived from different sources of mass information: (1) cross-calibration using South Pole Telescope Sunyaev-Zel'dovich (SPT-SZ) clusters, (2) calibration using number counts inmore »X-ray, in optical and in both X-ray and optical while marginalizing over cosmological parameters, and (3) other published analyses. We find that the constraints on the scaling relation from the number counts and SPT-SZ cross-calibration agree, indicating that our modelling of the selection function is adequate. Furthermore, we apply a largely cosmology independent method to validate selection functions via the computation of the probability of finding each cluster in the SPT-SZ sample in the MARD-Y3 sample and vice versa. This test reveals no clear evidence for MARD-Y3 contamination, SPT-SZ incompleteness or outlier fraction. Finally, we discuss the prospects of the techniques presented here to limit systematic selection effects in future cluster cosmological studies.« less