skip to main content


Title: Load Balanced Controller Association in Wireless Distributed SDNs
Wireless infrastructure is steadily evolving into wireless access for all humans and most devices, from 5G to Internet-of-Things. This widespread access creates the expectation of custom and adaptive services from the personal network to the backbone network. In addition, challenges of scale and interoperability exist across networks, applications and services, requiring an effective wireless network management infrastructure. For this reason Software-Defined Networks (SDN) have become an attractive research area for wireless and mobile systems. SDN can respond to sporadic topology issues such as dropped packets, message latency, and/or conflicting resource management, to improved collaboration between mobile access points, reduced interference and increased security options. Until recently, the main focus on wireless SDN has been a more centralized approach, which has issues with scalability, fault tolerance, and security. In this work, we propose a state of the art WAM-SDN system for large-scale network management. We discuss requirements for large scale wireless distributed WAM-SDN and provide preliminary benchmarking and performance analysis based on our hybrid distributed and decentralized architecture. Keywords: software defined networks, controller optimization, resilience.  more » « less
Award ID(s):
1738420
NSF-PAR ID:
10289074
Author(s) / Creator(s):
;
Date Published:
Journal Name:
IEEE Pervasive Computing Conference PhD Workshop
Page Range / eLocation ID:
1 to 2
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In the area of network monitoring and measurement a number of good tools are already available. However, most mature tools do not account for changes in network management brought about through Software Defined Networking (SDN). New tools developed to address the SDN paradigm often lack both observation scope and performance scale to support distributed management of accelerated measurement devices, high-throughput network processing, and distributed network function monitoring. In this paper we present an approach to distributed network monitoring and management using an agent-based edge computing framework. In addition, we provide a number of real-world examples where this system has been put into practice. 
    more » « less
  2. To interconnect research facilities across wide geographic areas, network operators deploy science networks, also referred to as Research and Education (R&E) networks. These networks allow experimenters to establish dedicated network connections between research facilities for transferring large amounts of data. Recently, R&E networks have started using Software-Defined Networking (SDN) and Software Defined Exchanges (SDX) for deploying these connections. AtlanticWave/SDX is a response to the growing demand to support end-to-end network services spanning multiple SDN domains. However, requesting these services is a challenging task for domain-expert scientists, because the interfaces of the R&E networks have been developed by network operators for network operators. In this paper, we propose interfaces that allow domain expert scientists to reserve resources of the scientific network using abstractions that focus on their data transfer needs for scientific workflow management. Recent trends in the networking field pursue better interfaces for requesting network services (e.g., intent-based networking). Although intents are sufficient for the needs of network operations, they are not abstract enough in most cases to be used by domain-expert scientists. This is an issue we are addressing in the AtlanticWave/SDX design: network operators and domain-expert scientists will have their own interfaces focusing on their specific needs. 
    more » « less
  3. Poster Abstract: To interconnect research facilities across wide geographic areas, network operators deploy science networks, also referred to as Research and Education (R&E) networks. These networks allow experimenters to establish dedicated network connections between research facilities for transferring large amounts of data. Recently, R&E networks have started using Software-Defined Networking (SDN) and Software Defined Exchanges (SDX) for deploying these connections. AtlanticWave/SDX is a response to the growing demand to support end-to-end network services spanning multiple SDN domains. However, requesting these services is a challenging task for domain-expert scientists, because the interfaces of the R&E networks have been developed by network operators for network operators. In this paper, we propose interfaces that allow domain expert scientists to reserve resources of the scientific network using abstractions that focus on their data transfer needs for scientific workflow management. Recent trends in the networking field pursue better interfaces for requesting network services (e.g., intent-based networking). Although intents are sufficient for the needs of network operations, they are not abstract enough in most cases to be used by domain-expert scientists. This is an issue we are addressing in the AtlanticWave/SDX design: network operators and domain expert scientists will have their own interfaces focusing on their specific needs. 
    more » « less
  4. The Cloud-Enhanced Open Software Defined Mobile Wireless Testbed for City-Scale Deployment (COSMOS) platform is a programmable city-scale shared multi-user advanced wireless testbed that is being deployed in West Harlem of New York City [1]. To keep pace with the significantly increased wireless link bandwidth and to effectively integrate the emerging C-RANs, COSMOS is designed to incorporate a fast programmable core network for providing connections across different computing layers. A key feature of COSMOS is its dark fiber based optical x-haul network that enables both highly flexible, user defined network topologies and experimentation directly in the optical physical layer. The optical architecture of COSMOS was presented in [2]. In this abstract, we present the tools and services designed to configure and monitor the performance of optical paths and topologies of the COSMOS testbed. In particular, we present the SDN framework that allows testbed users to implement experiments with application-driven control of optical and data networking functionalities. 
    more » « less
  5. Abstract—The Cloud-Enhanced Open Software Defined Mobile Wireless Testbed for City-Scale Deployment (COSMOS) platform is a programmable city-scale shared multi-user advanced wireless testbed that is being deployed in West Harlem of New York City [1]. To keep pace with the significantly increased wireless link bandwidth and to effectively integrate the emerging C-RANs, COSMOS is designed to incorporate a fast programmable core network for providing connections across different computing layers. A key feature of COSMOS is its dark fiber based optical x-haul network that enables both highly flexible, user defined network topologies and experimentation directly in the optical physical layer. The optical architecture of COSMOS was presented in [2]. In this abstract, we present the tools and services designed to configure and monitor the performance of optical paths and topologies of the COSMOS testbed. In particular, we present the SDN framework that allows testbed users to implement experiments with application-driven control of optical and data networking functionalities. 
    more » « less