skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: How Teachers Support Student Computational Thinking Practices
Computational Thinking (CT) is increasingly being targeted as a pedagogical goal for science education. As such, researchers and teachers should collaborate to scaffold student engagement with CT alongside new technology and curricula. We interviewed two high school teachers who implemented a unit using dynamic modeling software to examine how they supported student engagement with CT through modeling practices. Based on their interviews, they believed that they supported student engagement in CT and modeling through preliminary activities, conducting classroom demonstrations of the phenomenon, and engaging students in model revisions through dialogue.  more » « less
Award ID(s):
1842035
PAR ID:
10289241
Author(s) / Creator(s):
; ;
Editor(s):
Gresalfi, M.; Horn, I. S.
Date Published:
Journal Name:
How Teachers Support Student Computational Thinking Practices
Volume:
4
Page Range / eLocation ID:
2343-2344
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Gresalfi, M.; Horn, I. S. (Ed.)
    Computational Thinking (CT) is increasingly being targeted as a pedagogical goal for science education. As such, researchers and teachers should collaborate to scaffold student engagement with CT alongside new technology and curricula. We interviewed two high school teachers who implemented a unit using dynamic modeling software to examine how they supported student engagement with CT through modeling practices. Based on their interviews, they believed that they supported student engagement in CT and modeling through preliminary activities, conducting classroom demonstrations of the phenomenon, and engaging students in model revisions through dialogue. 
    more » « less
  2. The Maker Partnership Program (MPP) is an NSF-supported project that addresses the critical need for models of professional development (PD) and support that help elementary-level science teachers integrate computer science and computational thinking (CS and CT) into their classroom practices. The MPP aims to foster integration of these disciplines through maker pedagogy and curriculum. The MPP was designed as a research-practice partnership that allows researchers and practitioners to collaborate and iteratively design, implement and test the PD and curriculum. This paper describes the key elements of the MPP and early findings from surveys of teachers and students participating in the program. Our research focuses on learning how to develop teachers’ capacity to integrate CS and CT into elementary-level science instruction; understanding whether and how this integrated instruction promotes deeper student learning of science, CS and CT, as well as interest and engagement in these subjects; and exploring how the model may need to be adapted to fit local contexts. Participating teachers reported gaining knowledge and confidence for implementing the maker curriculum through the PDs. They anticipated that the greatest implementation challenges would be lack of preparation time, inaccessible computer hardware, lack of administrative support, and a lack of CS knowledge. Student survey results show that most participants were interested in CS and science at the beginning of the program. Student responses to questions about their disposition toward collaboration and persistence suggest some room for growth. Student responses to questions about who does CS are consistent with prevalent gender stereotypes (e.g., boys are naturally better than girls at computer programming), particularly among boys. 
    more » « less
  3. Chinn, C.; Tan, E.; Chan, C.; Kali, Y. (Ed.)
    We developed the Systems Thinking (ST) and Computational Thinking (CT) Identification Tool (ID Tool) to identify student involvement in ST and CT as they construct and revise computational models. Our ID Tool builds off the ST and CT Through Modeling Framework, emphasizing the synergistic relationship between ST and CT and demonstrating how both can be supported through computational modeling. This paper describes the process of designing and validating the ID Tool with special emphasis on the observable indicators of testing and debugging computational models. We collected 75 hours of students’ interactions with a computational modeling tool and analyzed them using the ID Tool to characterize students’ use of ST and CT when involved in modeling. The results suggest that the ID Tool has the potential to allow researchers and practitioners to identify student involvement in various aspects of ST and CT as they construct and revise computational models. 
    more » « less
  4. Computational models (CMs) offer pre-college students opportunities to integrate STEM disciplines with computational thinking (CT) in ways that reflect authentic STEM practice. However, not all STEM teachers and students are prepared to teach or learn programming skills required to construct CMs. To help broaden participation in computing and reduce the potentially prohibitive demands of learning programming, we propose alternate versions of computational modeling that require low or no programming. These versions rely on code comprehension and evaluation of given code and simulations instead of code creation. We present results from a pilot study that explores student engagement with CT practices and student challenges in three types of computational modeling activities. 
    more » « less
  5. The Billion Oyster Project and Curriculum and Community Enterprise for the Restoration of New York Harbor with New York City Public Schools (BOP-CCERS) program is a National Science Foundation (NSF) supported initiative and collaboration of multiple institutions and organizations led by Pace University. The NSF project, Innovative Technology Experiences for Students and Teachers (ITEST), had generated a large amount of data through engagement with teachers and students throughout New York City public schools. This article presents the second part to a large data collection study with focus on Underrepresented Minority (URM) student interest in STEM and engagement with teachers to support them in teaching science through experiential learning and lessons that connect science to the real world, particularly through science in the New York Harbor. The first component of the study focused on URM student interest in STEM. This second component of the study focuses on teacher engagement in the program, and what the researchers had learned in the process. Overall, teachers reported very favorable options on the impact of the BOP-CCERS activities as ways to generate student interest in STEM majors and careers. Teacher participants were generally positive about the amount of support and resources they received as members of the project, as well as the oyster-related knowledge and practices they learned to use with their own students in oyster field research. Data from the study provided evidence that the teacher activities were successful and met the project’s goals to provide support and resources for teachers to engage students in oyster restoration research. 
    more » « less