skip to main content


Title: How Teachers Support Student Computational Thinking Practices
Computational Thinking (CT) is increasingly being targeted as a pedagogical goal for science education. As such, researchers and teachers should collaborate to scaffold student engagement with CT alongside new technology and curricula. We interviewed two high school teachers who implemented a unit using dynamic modeling software to examine how they supported student engagement with CT through modeling practices. Based on their interviews, they believed that they supported student engagement in CT and modeling through preliminary activities, conducting classroom demonstrations of the phenomenon, and engaging students in model revisions through dialogue.  more » « less
Award ID(s):
1842035
NSF-PAR ID:
10289241
Author(s) / Creator(s):
; ;
Editor(s):
Gresalfi, M.; Horn, I. S.
Date Published:
Journal Name:
How Teachers Support Student Computational Thinking Practices
Volume:
4
Page Range / eLocation ID:
2343-2344
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Gresalfi, M. ; Horn, I. S. (Ed.)
    Computational Thinking (CT) is increasingly being targeted as a pedagogical goal for science education. As such, researchers and teachers should collaborate to scaffold student engagement with CT alongside new technology and curricula. We interviewed two high school teachers who implemented a unit using dynamic modeling software to examine how they supported student engagement with CT through modeling practices. Based on their interviews, they believed that they supported student engagement in CT and modeling through preliminary activities, conducting classroom demonstrations of the phenomenon, and engaging students in model revisions through dialogue. 
    more » « less
  2. The Maker Partnership Program (MPP) is an NSF-supported project that addresses the critical need for models of professional development (PD) and support that help elementary-level science teachers integrate computer science and computational thinking (CS and CT) into their classroom practices. The MPP aims to foster integration of these disciplines through maker pedagogy and curriculum. The MPP was designed as a research-practice partnership that allows researchers and practitioners to collaborate and iteratively design, implement and test the PD and curriculum. This paper describes the key elements of the MPP and early findings from surveys of teachers and students participating in the program. Our research focuses on learning how to develop teachers’ capacity to integrate CS and CT into elementary-level science instruction; understanding whether and how this integrated instruction promotes deeper student learning of science, CS and CT, as well as interest and engagement in these subjects; and exploring how the model may need to be adapted to fit local contexts. Participating teachers reported gaining knowledge and confidence for implementing the maker curriculum through the PDs. They anticipated that the greatest implementation challenges would be lack of preparation time, inaccessible computer hardware, lack of administrative support, and a lack of CS knowledge. Student survey results show that most participants were interested in CS and science at the beginning of the program. Student responses to questions about their disposition toward collaboration and persistence suggest some room for growth. Student responses to questions about who does CS are consistent with prevalent gender stereotypes (e.g., boys are naturally better than girls at computer programming), particularly among boys. 
    more » « less
  3. C2STEM is a web-based learning environment founded on a novel paradigm that combines block-structured, visual programming with the concept of domain specific modeling languages (DSMLs) to promote the synergistic learning of discipline-specific and computational thinking (CT) concepts and practices. Our design-based, collaborative learning environment aims to provide students in K-12 classrooms with immersive experiences in CT through computational modeling in realistic scenarios (e.g., building models of scientific phenomena). The goal is to increase student engagement and include inclusive opportunities for developing key computational skills needed for the 21st century workforce. Research implementations that include a semester-long high school physics classroom study have demonstrated the effectiveness of our approach in supporting synergistic learning of STEM and CS/CT concepts and practices, especially when compared to a traditional classroom approach. This technology demonstration will showcase our CS+X (X = physics, marine biology, or earth science) learning environment and associated curricula. Participants can engage in our design process and learn how to develop curricular modules that cover STEM and CS/CT concepts and practices. Our work is supported by an NSF STEM+C grant and involves a multi-institutional team comprising Vanderbilt University, SRI International, Looking Glass Ventures, Stanford University, Salem State University, and ETR. More information, including example computational modeling tasks, can be found at C2STEM.org. 
    more » « less
  4. Computational thinking is identified as one of the “essential skills for 21st-Century students.” [1] Studies of CT in school programs are being funded by many organizations, including the United States National Science Foundation. In this paper, we describe “lessons learned” over the first two years of a research program (PREDICTS: Principles and Resources for Educators to Infuse Computational Thinking in the Sciences) with the goal of developing knowledge of how to integrate CT into introductory high school biology and chemistry classes for all students. Using curricular modules developed by program staff, two in biology and two in chemistry, teachers piloting the program engaged students in CT with computational evidence from authentic tools in order to develop understanding of science concepts. Each module, representing about a week of instruction, addresses science ideas in the prescribed course of study for high school programs. Project researchers have collected survey data on teachers’: (1) beliefs about effective science teaching; (2) beliefs about their effectiveness as a science teacher and their students’ ability to learn science, and; (3) content preparedness. In addition, we observed module implementation, collected and analyzed student artifacts, and interviewed teachers at the conclusion of module implementation. Preliminary results indicated some challenges (access to technology, varying levels of experience among students) and cause for optimism (student and teacher engagement in CT and the computational tools used in the modules). Continuing research efforts are described in this paper, along with descriptions of the curricular modules and the use of observations and “CT check-ins” to assess student engagement in, application of, and learning of CT. 
    more » « less
  5. The Billion Oyster Project and Curriculum and Community Enterprise for the Restoration of New York Harbor with New York City Public Schools (BOP-CCERS) program is a National Science Foundation (NSF) supported initiative and collaboration of multiple institutions and organizations led by Pace University. The NSF project, Innovative Technology Experiences for Students and Teachers (ITEST), had generated a large amount of data through engagement with teachers and students throughout New York City public schools. This article presents the second part to a large data collection study with focus on Underrepresented Minority (URM) student interest in STEM and engagement with teachers to support them in teaching science through experiential learning and lessons that connect science to the real world, particularly through science in the New York Harbor. The first component of the study focused on URM student interest in STEM. This second component of the study focuses on teacher engagement in the program, and what the researchers had learned in the process. Overall, teachers reported very favorable options on the impact of the BOP-CCERS activities as ways to generate student interest in STEM majors and careers. Teacher participants were generally positive about the amount of support and resources they received as members of the project, as well as the oyster-related knowledge and practices they learned to use with their own students in oyster field research. Data from the study provided evidence that the teacher activities were successful and met the project’s goals to provide support and resources for teachers to engage students in oyster restoration research. 
    more » « less