skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Stochastic Iterative Graph Matching
Recent works apply Graph Neural Networks (GNNs) to graph matching tasks and show promising results. Considering that model outputs are complex matchings, we devise several techniques to improve the learning of GNNs and obtain a new model, Stochastic Iterative Graph MAtching (SIGMA). Our model predicts a distribution of matchings, instead of a single matching, for a graph pair so the model can explore several probable matchings. We further introduce a novel multi-step matching procedure, which learns how to refine a graph pair’s matching results incrementally. The model also includes dummy nodes so that the model does not have to find matchings for nodes without correspondence. We fit this model to data via scalable stochastic optimization. We conduct extensive experiments across synthetic graph datasets as well as biochemistry and computer vision applications. Across all tasks, our results show that SIGMA can produce significantly improved graph matching results compared to state-of-the-art models. Ablation studies verify that each of our components (stochastic training, iterative matching, and dummy nodes) offers noticeable improvement.  more » « less
Award ID(s):
1908617
PAR ID:
10289275
Author(s) / Creator(s):
; ; ;
Editor(s):
Meila, Marina; Zhang, Tong
Date Published:
Journal Name:
Proceedings of the 38th International Conference on Machine Learning
Volume:
139
Page Range / eLocation ID:
6815 - 6825
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Recent works apply Graph Neural Networks (GNNs) to graph matching tasks and show promising results. Considering that model outputs are complex matchings, we devise several techniques to improve the learning of GNNs and obtain a new model, Stochastic Iterative Graph MAtching (SIGMA). Our model predicts a distribution of matchings, instead of a single matching, for a graph pair so the model can explore several probable matchings. We further introduce a novel multi-step matching procedure, which learns how to refine a graph pair’s matching results incrementally. The model also includes dummy nodes so that the model does not have to find matchings for nodes without correspondence. We fit this model to data via scalable stochastic optimization. We conduct extensive experiments across synthetic graph datasets as well as biochemistry and computer vision applications. Across all tasks, our results show that SIGMA can produce significantly improved graph matching results compared to state-of-the-art models. Ablation studies verify that each of our components (stochastic training, iterative matching, and dummy nodes) offers noticeable improvement. 
    more » « less
  2. We propose a model for online graph problems where algorithms are given access to an oracle that predicts (e.g., based on modeling assumptions or on past data) the degrees of nodes in the graph. Within this model, we study the classic problem of online bipartite matching, and a natural greedy matching algorithm called MinPredictedDegree, which uses predictions of the degrees of offline nodes. For the bipartite version of a stochastic graph model due to Chung, Lu, and Vu where the expected values of the offline degrees are known and used as predictions, we show that MinPredictedDegree stochastically dominates any other online algorithm, i.e., it is optimal for graphs drawn from this model. Since the “symmetric” version of the model, where all online nodes are identical, is a special case of the well-studied “known i.i.d. model”, it follows that the competitive ratio of MinPredictedDegree on such inputs is at least 0.7299. For the special case of graphs with power law degree distributions, we show that MinPredictedDegree frequently produces matchings almost as large as the true maximum matching on such graphs. We complement these results with an extensive empirical evaluation showing that MinPredictedDegree compares favorably to state-of-the-art online algorithms for online matching. 
    more » « less
  3. Graph neural networks (GNNs) are the dominant approach to solving machine learning problems defined over graphs. Despite much theoretical and empirical work in recent years, our understanding of finer-grained aspects of architectural design for GNNs remains impoverished. In this paper, we consider the benefits of architectures that maintain and update edge embeddings. On the theoretical front, under a suitable computational abstraction for a layer in the model, as well as memory constraints on the embeddings, we show that there are natural tasks on graphical models for which architectures leveraging edge embeddings can be much shallower. Our techniques are inspired by results on time-space tradeoffs in theoretical computer science. Empirically, we show architectures that maintain edge embeddings almost always improve on their node-based counterparts—frequently significantly so in topologies that have “hub” nodes. 
    more » « less
  4. Over the past decade, Graph Neural Networks (GNNs) have transformed graph representation learning. In the widely adopted message-passing GNN framework, nodes refine their representations by aggregating information from neighboring nodes iteratively. While GNNs excel in various domains, recent theoretical studies have raised concerns about their capabilities. GNNs aim to address various graph-related tasks by utilizing such node representations, however, this one-size-fits-all approach proves suboptimal for diverse tasks. Motivated by these observations, we conduct empirical tests to compare the performance of current GNN models with more conventional and direct methods in link prediction tasks. Introducing our model, PROXI, which leverages proximity information of node pairs in both graph and attribute spaces, we find that standard machine learning (ML) models perform competitively, even outperforming cutting-edge GNN models when applied to these proximity metrics derived from node neighborhoods and attributes. This holds true across both homophilic and heterophilic networks, as well as small and large benchmark datasets, including those from the Open Graph Benchmark (OGB). Moreover, we show that augmenting traditional GNNs with PROXI significantly boosts their link prediction performance. Our empirical findings corroborate the previously mentioned theoretical observations and imply that there exists ample room for enhancement in current GNN models to reach their potential. 
    more » « less
  5. Many applications of machine learning require a model to make accurate predictions on test examples that are distributionally different from training ones, while task-specific labels are scarce during training. An effective approach to this challenge is to pre-train a model on related tasks where data is abundant, and then fine-tune it on a downstream task of interest. While pre-training has been effective in many language and vision domains, it remains an open question how to effectively use pre-training on graph datasets. In this paper, we develop a new strategy and self-supervised methods for pre-training Graph Neural Networks (GNNs). The key to the success of our strategy is to pre-train an expressive GNN at the level of individual nodes as well as entire graphs so that the GNN can learn useful local and global representations simultaneously. We systematically study pre-training on multiple graph classification datasets. We find that naïve strategies, which pre-train GNNs at the level of either entire graphs or individual nodes, give limited improvement and can even lead to negative transfer on many downstream tasks. In contrast, our strategy avoids negative transfer and improves generalization significantly across downstream tasks, leading up to 9.4% absolute improvements in ROC-AUC over non-pre-trained models and achieving state-of-the-art performance for molecular property prediction and protein function prediction. 
    more » « less