skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Effects of changes in temperature on Zika dynamics and control
When a rare pathogen emerges to cause a pandemic, it is critical to understand its dynamics and the impact of mitigation measures. We use experimental data to parametrize a temperature-dependent model of Zika virus (ZIKV) transmission dynamics and analyse the effects of temperature variability and control-related parameters on the basic reproduction number ( R 0 ) and the final epidemic size of ZIKV. Sensitivity analyses show that these two metrics are largely driven by different parameters, with the exception of temperature, which is the dominant driver of epidemic dynamics in the models. Our R 0 estimate has a single optimum temperature (≈30°C), comparable to other published results (≈29°C). However, the final epidemic size is maximized across a wider temperature range, from 24 to 36°C. The models indicate that ZIKV is highly sensitive to seasonal temperature variation. For example, although the model predicts that ZIKV transmission cannot occur at a constant temperature below 23°C (≈ average annual temperature of Rio de Janeiro, Brazil), the model predicts substantial epidemics for areas with a mean temperature of 20°C if there is seasonal variation of 10°C (≈ average annual temperature of Tampa, Florida). This suggests that the geographical range of ZIKV is wider than indicated from static R 0 models, underscoring the importance of climate dynamics and variation in the context of broader climate change on emerging infectious diseases.  more » « less
Award ID(s):
2011147
PAR ID:
10289326
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Journal of The Royal Society Interface
Volume:
18
Issue:
178
ISSN:
1742-5662
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Influenza epidemics cause considerable morbidity and mortality every year worldwide. Climate-driven epidemiological models are mainstream tools to understand seasonal transmission dynamics and predict future trends of influenza activity, especially in temperate regions. Testing the structural identifiability of these models is a fundamental prerequisite for the model to be applied in practice, by assessing whether the unknown model parameters can be uniquely determined from epidemic data. In this study, we applied a scaling method to analyse the structural identifiability of four types of commonly used humidity-driven epidemiological models. Specifically, we investigated whether the key epidemiological parameters (i.e., infectious period, the average duration of immunity, the average latency period, and the maximum and minimum daily basic reproductive number) can be uniquely determined simultaneously when prevalence data is observable. We found that each model is identifiable when the prevalence of infection is observable. The structural identifiability of these models will lay the foundation for testing practical identifiability in the future using synthetic prevalence data when considering observation noise. In practice, epidemiological models should be examined with caution before using them to estimate model parameters from epidemic data. 
    more » « less
  2. Abstract In the aftermath of the 2015 pandemic of Zika virus (ZIKV), concerns over links between climate change and emerging arboviruses have become more pressing. Given the potential that much of the world might remain at risk from the virus, we used a previously established temperature‐dependent transmission model for ZIKV to project climate change impacts on transmission suitability risk by mid‐century (a generation into the future). Based on these model predictions, in the worst‐case scenario, over 1.3 billion new people could face suitable transmission temperatures for ZIKV by 2050. The next generation will face substantially increased ZIKV transmission temperature suitability in North America and Europe, where naïve populations might be particularly vulnerable. Mitigating climate change even to moderate emissions scenarios could significantly reduce global expansion of climates suitable for ZIKV transmission, potentially protecting around 200 million people. Given these suitability risk projections, we suggest an increased priority on research establishing the immune history of vulnerable populations, modeling when and where the next ZIKV outbreak might occur, evaluating the efficacy of conventional and novel intervention measures, and increasing surveillance efforts to prevent further expansion of ZIKV. 
    more » « less
  3. null (Ed.)
    Abstract Disease transmission and behaviour change are both fundamentally social phenomena. Behaviour change can have profound consequences for disease transmission, and epidemic conditions can favour the more rapid adoption of behavioural innovations. We analyse a simple model of coupled behaviour change and infection in a structured population characterised by homophily and outgroup aversion. Outgroup aversion slows the rate of adoption and can lead to lower rates of adoption in the later-adopting group or even behavioural divergence between groups when outgroup aversion exceeds positive ingroup influence. When disease dynamics are coupled to the behaviour-adoption model, a wide variety of outcomes are possible. Homophily can either increase or decrease the final size of the epidemic depending on its relative strength in the two groups and on R 0 for the infection. For example, if the first group is homophilous and the second is not, the second group will have a larger epidemic. Homophily and outgroup aversion can also produce dynamics suggestive of a ‘second wave’ in the first group that follows the peak of the epidemic in the second group. Our simple model reveals dynamics that are suggestive of the processes currently observed under pandemic conditions in culturally and/or politically polarised populations such as the USA. 
    more » « less
  4. To make more informed predictions of host–pathogen interactions under climate change, studies have incorporated the thermal performance of host, vector and pathogen traits into disease models to quantify effects on average transmission rates. However, this body of work has omitted the fact that variation in susceptibility among individual hosts affects disease spread and long-term patterns of host population dynamics. Furthermore, and especially for ectothermic host species, variation in susceptibility is likely to be plastic, influenced by variables such as environmental temperature. For example, as host individuals respond idiosyncratically to temperature, this could affect the population-level variation in susceptibility, such that there may be predictable functional relationships between variation in susceptibility and temperature. Quantifying the relationship between temperature and among-host trait variation will therefore be critical for predicting how climate change and disease will interact to influence host–pathogen population dynamics. Here, we use a model to demonstrate how short-term effects of temperature on the distribution of host susceptibility can drive epidemic characteristics, fluctuations in host population sizes and probabilities of host extinction. Our results emphasize that more research is needed in disease ecology and climate biology to understand the mechanisms that shape individual trait variation, not just trait averages. 
    more » « less
  5. Environmental transmission is a critical driver of cholera dynamics and a key factor influencing model-based inference and forecasting. This study focuses on stable parameter estimation and forecasting of cholera outbreaks using a compartmental SIRB model informed by three formulations of the environmental transmission rate: (1) a pre-parameterized periodic function, (2) a temperature-driven function, and (3) a flexible, data-driven time-dependent function. We apply these methods to the 1991–1997 cholera epidemic in Peru, estimating key parameters; these include the case reporting rate and human-to-human transmission rate. We assess practical identifiability via parametric bootstrapping and compare the performance of each transmission formulation in fitting epidemic data and forecasting short-term incidence. Our results demonstrate that while the data-driven approach achieves superior in-sample fit, the temperature-dependent model offers better forecasting performance due to its ability to incorporate seasonal trends. The study highlights trade-offs between model flexibility and parameter identifiability and provides a framework for evaluating cholera transmission models under data limitations. These insights can inform public health strategies for outbreak preparedness and response. 
    more » « less