skip to main content


Title: Topological analysis of differential effects of ketamine and propofol anaesthesia on brain dynamics
Research has found that the vividness of conscious experience is related to brain dynamics. Despite both being anaesthetics, propofol and ketamine produce different subjective states: we explore the different effects of these two anaesthetics on the structure of dynamic attractors reconstructed from electrophysiological activity recorded from cerebral cortex of two macaques. We used two methods: the first embeds the recordings in a continuous high-dimensional manifold on which we use topological data analysis to infer the presence of higher-order dynamics. The second reconstruction, an ordinal partition network embedding, allows us to create a discrete state-transition network, which is amenable to information-theoretic analysis and contains rich information about state-transition dynamics. We find that the awake condition generally had the ‘richest’ structure, visiting the most states, the presence of pronounced higher-order structures, and the least deterministic dynamics. By contrast, the propofol condition had the most dissimilar dynamics, transitioning to a more impoverished, constrained, low-structure regime. The ketamine condition, interestingly, seemed to combine aspects of both: while it was generally less complex than the awake condition, it remained well above propofol in almost all measures. These results provide deeper and more comprehensive insights than what is typically gained by using point-measures of complexity.  more » « less
Award ID(s):
1735095
NSF-PAR ID:
10289333
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Royal Society Open Science
Volume:
8
Issue:
6
ISSN:
2054-5703
Page Range / eLocation ID:
201971
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Jbabdi, Saad (Ed.)
    Whether the brain operates at a critical “tipping” point is a long standing scientific question, with evidence from both cellular and systems-scale studies suggesting that the brain does sit in, or near, a critical regime. Neuroimaging studies of humans in altered states of consciousness have prompted the suggestion that maintenance of critical dynamics is necessary for the emergence of consciousness and complex cognition, and that reduced or disorganized consciousness may be associated with deviations from criticality. Unfortunately, many of the cellular-level studies reporting signs of criticality were performed in non-conscious systems (in vitro neuronal cultures) or unconscious animals (e.g. anaesthetized rats). Here we attempted to address this knowledge gap by exploring critical brain dynamics in invasive ECoG recordings from multiple sessions with a single macaque as the animal transitioned from consciousness to unconsciousness under different anaesthetics (ketamine and propofol). We use a previously-validated test of criticality: avalanche dynamics to assess the differences in brain dynamics between normal consciousness and both drug-states. Propofol and ketamine were selected due to their differential effects on consciousness (ketamine, but not propofol, is known to induce an unusual state known as “dissociative anaesthesia”). Our analyses indicate that propofol dramatically restricted the size and duration of avalanches, while ketamine allowed for more awake-like dynamics to persist. In addition, propofol, but not ketamine, triggered a large reduction in the complexity of brain dynamics. All states, however, showed some signs of persistent criticality when testing for exponent relations and universal shape-collapse. Further, maintenance of critical brain dynamics may be important for regulation and control of conscious awareness. 
    more » « less
  2. Abstract Sustained attention is a critical cognitive function reflected in an individual’s whole-brain pattern of functional magnetic resonance imaging functional connectivity. However, sustained attention is not a purely static trait. Rather, attention waxes and wanes over time. Do functional brain networks that underlie individual differences in sustained attention also underlie changes in attentional state? To investigate, we replicate the finding that a validated connectome-based model of individual differences in sustained attention tracks pharmacologically induced changes in attentional state. Specifically, preregistered analyses revealed that participants exhibited functional connectivity signatures of stronger attention when awake than when under deep sedation with the anesthetic agent propofol. Furthermore, this effect was relatively selective to the predefined sustained attention networks: propofol administration modulated strength of the sustained attention networks more than it modulated strength of canonical resting-state networks and a network defined to predict fluid intelligence, and the functional connections most affected by propofol sedation overlapped with the sustained attention networks. Thus, propofol modulates functional connectivity signatures of sustained attention within individuals. More broadly, these findings underscore the utility of pharmacological intervention in testing both the generalizability and specificity of network-based models of cognitive function. 
    more » « less
  3. The purpose of this research paper is to understand how diverse students are incorporated into the social structure of a large enrollment first-year engineering design course. Despite previous work demonstrating the benefits of diverse individuals in engineering, little work has examined how diverse students are incorporated into the social networks that exist within engineering classrooms. Social interactions are one of the most influential sources for integration into communities of practice. Through understanding how students interact and the structure of these interactions, we can elucidate how the engineering community includes members of underrepresented populations. Previous social network analysis (SNA) studies have scrutinized student classroom interactions. These studies typically attempt to link classroom interactions to academic outcomes (i.e., grades). In this study, we start to shift the focus away from connecting student interactions to academic outcomes and examine how the structure of student interactions can encourage an inclusive environment in a formal engineering environment. SNA data was collected via an online survey (n = 502, 74% response rate) one month into the semester at a Western land-grant institution. The survey asked first-year engineering students to indicate with whom they had interacted using a pre-populated list of the class roster and open-ended questions. The number of students that were mentioned by a participant (out-degree) is interpreted as a proxy of their sociableness. Whereas, the number of times a student was mentioned by others (in-degree) is interpreted as popularity. We posit that in an inclusive network structure the social behaviors (i.e., in and out-degree) will be independent of students’ demographic characteristics (e.g., race and gender). Nonparametric hypothesis testing (i.e., Kruskal-Wallis and Dunn’s test) was used to investigate the effects of gender and race on both in and out-degree. Results indicate that the social structure of the first-year engineering community is inclusive of both gender and race. Specifically, results indicated no significant differences for in-degree based on measures of race and gender, for students who provided race and gender information. Out-degree was not significantly different based on race. However, women did demonstrate significantly higher out-degree scores (i.e., greater sociableness) than their peers. Building on previous SNA literature, the increased connections expressed by women may lead to increased learning gains or performance within engineering. Results indicated that the social structure of this first-year engineering course, as indicated by in-degree and out-degree, is not significantly different for underrepresented groups. This result begins to illustrate a more complex story than the existing literature has documented of engineering as an unwelcoming environment for underrepresented students. Future work will explore how these structures do or do not persist over time and how individuals develop attitudes towards diverse individuals as a result of these interactions. We hope that the results of this work will provide practical ways to improve engineering climate for underrepresented students. 
    more » « less
  4. Abstract Background Few studies have systematically investigated robust controllers for lower limb rehabilitation exoskeletons (LLREs) that can safely and effectively assist users with a variety of neuromuscular disorders to walk with full autonomy. One of the key challenges for developing such a robust controller is to handle different degrees of uncertain human-exoskeleton interaction forces from the patients. Consequently, conventional walking controllers either are patient-condition specific or involve tuning of many control parameters, which could behave unreliably and even fail to maintain balance. Methods We present a novel, deep neural network, reinforcement learning-based robust controller for a LLRE based on a decoupled offline human-exoskeleton simulation training with three independent networks, which aims to provide reliable walking assistance against various and uncertain human-exoskeleton interaction forces. The exoskeleton controller is driven by a neural network control policy that acts on a stream of the LLRE’s proprioceptive signals, including joint kinematic states, and subsequently predicts real-time position control targets for the actuated joints. To handle uncertain human interaction forces, the control policy is trained intentionally with an integrated human musculoskeletal model and realistic human-exoskeleton interaction forces. Two other neural networks are connected with the control policy network to predict the interaction forces and muscle coordination. To further increase the robustness of the control policy to different human conditions, we employ domain randomization during training that includes not only randomization of exoskeleton dynamics properties but, more importantly, randomization of human muscle strength to simulate the variability of the patient’s disability. Through this decoupled deep reinforcement learning framework, the trained controller of LLREs is able to provide reliable walking assistance to patients with different degrees of neuromuscular disorders without any control parameter tuning. Results and conclusion A universal, RL-based walking controller is trained and virtually tested on a LLRE system to verify its effectiveness and robustness in assisting users with different disabilities such as passive muscles (quadriplegic), muscle weakness, or hemiplegic conditions without any control parameter tuning. Analysis of the RMSE for joint tracking, CoP-based stability, and gait symmetry shows the effectiveness of the controller. An ablation study also demonstrates the strong robustness of the control policy under large exoskeleton dynamic property ranges and various human-exoskeleton interaction forces. The decoupled network structure allows us to isolate the LLRE control policy network for testing and sim-to-real transfer since it uses only proprioception information of the LLRE (joint sensory state) as the input. Furthermore, the controller is shown to be able to handle different patient conditions without the need for patient-specific control parameter tuning. 
    more » « less
  5. Single-molecule Förster Resonance Energy Transfer (smFRET) experiments are ideally suited to resolve the structural dynamics of biomolecules. A significant challenge to date is capturing and quantifying the exchange between multiple conformational states, mainly when these dynamics occur on the sub-millisecond timescale. Many methods for quantitative analysis are challenged if more than two states are involved, and the appropriate choice of the number of states in the kinetic network is difficult. An additional complication arises if dynamically active molecules coexist with pseudo-static molecules in similar conformational states with undistinguishable Förster Resonance Energy Transfer (FRET) efficiencies. To address these problems, we developed a quantitative integrative analysis framework that combines the information from FRET-lines that relate average fluorescence lifetimes and intensities in two-dimensional burst frequency histograms, fluorescence decays obtained by time-correlated single-photon-counting, photon distribution analysis of the intensities, and fluorescence correlation spectroscopy. Individually, these methodologies provide ambiguous results for the characterization of dynamics in complex kinetic networks. However, the global analysis approach enables accurate determination of the number of states, their kinetic connectivity, the transition rate constants, and species fractions. To challenge the potential of smFRET experiments for studying multi-state kinetic networks, we apply our integrative framework using a set of synthetic data for three-state systems with different kinetic connectivity and exchange rates. Our methodology paves the way toward an integrated analysis of multiparameter smFRET experiments that spans all dimensions of the experimental data. Finally, we propose a workflow for the analysis and show examples that demonstrate the usefulness of this toolkit for dynamic structural biology. 
    more » « less