skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2025

Title: State-transition dynamics of resting-state functional magnetic resonance imaging data: model comparison and test-to-retest analysis
Abstract Electroencephalogram (EEG) microstate analysis entails finding dynamics of quasi-stable and generally recurrent discrete states in multichannel EEG time series data and relating properties of the estimated state-transition dynamics to observables such as cognition and behavior. While microstate analysis has been widely employed to analyze EEG data, its use remains less prevalent in functional magnetic resonance imaging (fMRI) data, largely due to the slower timescale of such data. In the present study, we extend various data clustering methods used in EEG microstate analysis to resting-state fMRI data from healthy humans to extract their state-transition dynamics. We show that the quality of clustering is on par with that for various microstate analyses of EEG data. We then develop a method for examining test–retest reliability of the discrete-state transition dynamics between fMRI sessions and show that the within-participant test–retest reliability is higher than between-participant test–retest reliability for different indices of state-transition dynamics, different networks, and different data sets. This result suggests that state-transition dynamics analysis of fMRI data could discriminate between different individuals and is a promising tool for performing fingerprinting analysis of individuals.  more » « less
Award ID(s):
2204936
PAR ID:
10610790
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
BMC
Date Published:
Journal Name:
BMC Neuroscience
Volume:
25
Issue:
1
ISSN:
1471-2202
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Energy landscape analysis is a data‐driven method to analyse multidimensional time series, including functional magnetic resonance imaging (fMRI) data. It has been shown to be a useful characterization of fMRI data in health and disease. It fits an Ising model to the data and captures the dynamics of the data as movement of a noisy ball constrained on the energy landscape derived from the estimated Ising model. In the present study, we examine test–retest reliability of the energy landscape analysis. To this end, we construct a permutation test that assesses whether or not indices characterizing the energy landscape are more consistent across different sets of scanning sessions from the same participant (i.e. within‐participant reliability) than across different sets of sessions from different participants (i.e. between‐participant reliability). We show that the energy landscape analysis has significantly higher within‐participant than between‐participant test–retest reliability with respect to four commonly used indices. We also show that a variational Bayesian method, which enables us to estimate energy landscapes tailored to each participant, displays comparable test–retest reliability to that using the conventional likelihood maximization method. The proposed methodology paves the way to perform individual‐level energy landscape analysis for given data sets with a statistically controlled reliability. 
    more » « less
  2. null (Ed.)
    Abstract Background Ecological momentary assessment (EMA) is a methodology involving repeated surveys to collect in situ data that describe respondents' current or recent experiences and related contexts in their natural environments. Audiology literature investigating the test-retest reliability of EMA is scarce. Purpose This article examines the test-retest reliability of EMA in measuring the characteristics of listening contexts and listening experiences. Research Design An observational study. Study Sample Fifty-one older adults with hearing loss. Data Collection and Analysis The study was part of a larger study that examined the effect of hearing aid technologies. The larger study had four trial conditions and outcome was measured using a smartphone-based EMA system. After completing the four trial conditions, participants repeated one of the conditions to examine the EMA test-retest reliability. The EMA surveys contained questions that assessed listening context characteristics including talker familiarity, talker location, and noise location, as well as listening experiences including speech understanding, listening effort, loudness satisfaction, and hearing aid satisfaction. The data from multiple EMA surveys collected by each participant were aggregated in each of the test and retest conditions. Test-retest correlation on the aggregated data was then calculated for each EMA survey question to determine the reliability of EMA. Results At the group level, listening context characteristics and listening experience did not change between the test and retest conditions. The test-retest correlation varied across the EMA questions, with the highest being the questions that assessed talker location (median r = 1.0), reverberation (r = 0.89), and speech understanding (r = 0.85), and the lowest being the items that quantified noise location (median r = 0.63), talker familiarity (r = 0.46), listening effort (r = 0.61), loudness satisfaction (r = 0.60), and hearing aid satisfaction (r = 0.61). Conclusion Several EMA questions yielded appropriate test-retest reliability results. The lower test-retest correlations for some EMA survey questions were likely due to fewer surveys completed by participants and poorly designed questions. Therefore, the present study stresses the importance of using validated questions in EMA. With sufficient numbers of surveys completed by respondents and with appropriately designed survey questions, EMA could have reasonable test-retest reliability in audiology research. 
    more » « less
  3. Brain network models (BNMs) have become a promising theoretical framework for simulating signals that are representative of whole-brain activity such as resting-state fMRI. However, it has been difficult to compare the complex brain activity obtained from simulations to empirical data. Previous studies have used simple metrics to characterize coordination between regions such as functional connectivity. We extend this by applying various different dynamic analysis tools that are currently used to understand empirical resting-state fMRI (rs-fMRI) to the simulated data. We show that certain properties correspond to the structural connectivity input that is shared between the models, and certain dynamic properties relate more to the mathematical description of the brain network model. We conclude that the dynamic properties that explicitly examine patterns of signal as a function of time rather than spatial coordination between different brain regions in the rs-fMRI signal seem to provide the largest contrasts between different BNMs and the unknown empirical dynamical system. Our results will be useful in constraining and developing more realistic simulations of whole-brain activity. 
    more » « less
  4. Background: Schizophrenia affects around 1% of the global population. Functional connectivity extracted from resting-state functional magnetic resonance imaging (rs-fMRI) has previously been used to study schizophrenia and has great potential to provide novel insights into the disorder. Some studies have shown abnormal functional connectivity in the default mode network (DMN) of individuals with schizophrenia, and more recent studies have shown abnormal dynamic functional connectivity (dFC) in individuals with schizophrenia. However, DMN dFC and the link between abnormal DMN dFC and symptom severity have not been well-characterized. Method: Resting-state fMRI data from subjects with schizophrenia (SZ) and healthy controls (HC) across two datasets were analyzed independently. We captured seven maximally independent subnodes in the DMN by applying group independent component analysis and estimated dFC between subnode time courses using a sliding window approach. A clustering method separated the dFCs into five reoccurring brain states. A feature selection method modeled the difference between SZs and HCs using the state-specific FC features. Finally, we used the transition probability of a hidden Markov model to characterize the link between symptom severity and dFC in SZ subjects. Results: We found decreases in the connectivity of the anterior cingulate cortex (ACC) and increases in the connectivity between the precuneus (PCu) and the posterior cingulate cortex (PCC) (i.e., PCu/PCC) of SZ subjects. In SZ, the transition probability from a state with weaker PCu/PCC and stronger ACC connectivity to a state with stronger PCu/PCC and weaker ACC connectivity increased with symptom severity. Conclusions: To our knowledge, this was the first study to investigate DMN dFC and its link to schizophrenia symptom severity. We identified reproducible neural states in a data-driven manner and demonstrated that the strength of connectivity within those states differed between SZs and HCs. Additionally, we identified a relationship between SZ symptom severity and the dynamics of DMN functional connectivity. We validated our results across two datasets. These results support the potential of dFC for use as a biomarker of schizophrenia and shed new light upon the relationship between schizophrenia and DMN dynamics. 
    more » « less
  5. Abstract Neural oscillations may be sensitive to aspects of brain maturation such as myelination and synaptic density changes. Better characterization of developmental trajectories and reliability is necessary for understanding typical and atypical neurodevelopment. Here, we examined reliability in 110 typically developing children and adolescents (aged 9–17 years) across 2.25 years. From 10 min of magnetoencephalography resting-state data, normalized source spectral power and intraclass correlation coefficients were calculated. We found sex-specific differences in global normalized power, with males showing age-related decreases in delta and theta, along with age-related increases in beta and gamma. Females had fewer significant age-related changes. Structural magnetic resonance imaging revealed that males had more total gray, subcortical gray, and cortical white matter volume. There were significant age-related changes in total gray matter volume with sex-specific and frequency-specific correlations to normalized power. In males, increased total gray matter volume correlated with increased theta and alpha, along with decreased gamma. Split-half reliability was excellent in all frequency bands and source regions. Test–retest reliability ranged from good (alpha) to fair (theta) to poor (remaining bands). While resting-state neural oscillations can have fingerprint-like quality in adults, we show here that neural oscillations continue to evolve in children and adolescents due to brain maturation and neurodevelopmental change. 
    more » « less