skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Machine Learning: New Ideas and Tools in Environmental Science and Engineering
The rapid increase in both quantity and complexity of data that are being generated daily in the field of environmental science and engineering (ESE) demands accompanied advancement in data analytics. Advanced data analysis approaches, such as machine learning (ML), have become indispensable tools for revealing hidden patterns or deducing correlations for which conventional analytical methods face limitations or challenges. However, ML concepts and practices have not been widely utilized by researchers in ESE. This feature explores the potential of ML to revolutionize data analysis and modeling in the ESE field, and covers the essential knowledge needed for such applications. First, we use five examples to illustrate how ML addresses complex ESE problems. We then summarize four major types of applications of ML in ESE: making predictions; extracting feature importance; detecting anomalies; and discovering new materials or chemicals. Next, we introduce the essential knowledge required and current shortcomings in ML applications in ESE, with a focus on three important but often overlooked components when applying ML: correct model development; proper model interpretation; and sound applicability analysis. Finally, we discuss challenges and future opportunities in the application of ML tools in ESE to highlight the potential of ML in this field.  more » « less
Award ID(s):
1804708
PAR ID:
10289361
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Environmental Science & Technology
Volume:
ASAP
ISSN:
0013-936X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Glasses have been an integral part of human life for more than 2000 years. Despite several years of research and analysis, some fundamental and practical questions on glasses still remain unanswered. While most of the earlier approaches were based on (i) expert knowledge and intuition, (ii) Edisonian trial and error, or (iii) physics-driven modeling and analysis, recent studies suggest that data-driven techniques, such as artificial intelligence (AI) and machine learning (ML), can provide fresh perspectives to tackle some of these questions. In this article, we identify 21 grand challenges in glass science, the solutions of which are either enabling AI and ML or enabled by AI and ML to accelerate the field of glass science. The challenges presented here range from fundamental questions related to glass formation and composition–processing–property relationships to industrial problems such as automated flaw detection in glass manufacturing. We believe that the present article will instill enthusiasm among the readers to explore some of the grand challenges outlined here and to discover many more challenges that can advance the field of glass science, engineering, and technology. 
    more » « less
  2. Recent studies have reported the experimental discovery that nanoscale specimens of even a natural material, such as diamond, can be deformed elastically to as much as 10% tensile elastic strain at room temperature without the onset of permanent damage or fracture. Computational work combining ab initio calculations and machine learning (ML) algorithms has further demonstrated that the bandgap of diamond can be altered significantly purely by reversible elastic straining. These findings open up unprecedented possibilities for designing materials and devices with extreme physical properties and performance characteristics for a variety of technological applications. However, a general scientific framework to guide the design of engineering materials through such elastic strain engineering (ESE) has not yet been developed. By combining first-principles calculations with ML, we present here a general approach to map out the entire phonon stability boundary in six-dimensional strain space, which can guide the ESE of a material without phase transitions. We focus on ESE of vibrational properties, including harmonic phonon dispersions, nonlinear phonon scattering, and thermal conductivity. While the framework presented here can be applied to any material, we show as an example demonstration that the room-temperature lattice thermal conductivity of diamond can be increased by more than 100% or reduced by more than 95% purely by ESE, without triggering phonon instabilities. Such a framework opens the door for tailoring of thermal-barrier, thermoelectric, and electro-optical properties of materials and devices through the purposeful design of homogeneous or inhomogeneous strains. 
    more » « less
  3. High-entropy alloys (HEAs) have attracted considerable attention due to their exceptional properties and outstanding performance across various applications. However, the vast compositional space and complex high-dimensional atomic interactions pose significant challenges in uncovering fundamental physical principles and effectively guiding alloy design. Traditional experimental approaches, often reliant on trial-and-error methods, are time-consuming, cost-prohibitive, and inefficient. To accelerate progress in this field, advanced simulation techniques and data-driven methodologies, particularly machine learning (ML) with a particular interest in nanoscale phenomena, have emerged as transformative tools for composition design, property prediction, and performance optimization. By leveraging extensive materials databases and sophisticated learning algorithms, ML facilitates the discovery of intricate patterns that conventional methods may overlook, and enables the design of HEAs with targeted properties. This review paper provides a comprehensive overview of recent advancements in ML applications for HEAs. It begins with a brief introduction of the fundamental principles of HEAs and ML methodologies, including key algorithms, databases, and evaluation metrics. The critical role of materials representation and feature engineering in ML-driven HEA design is thoroughly discussed. Furthermore, state-of-the-art developments in the integration of ML with HEA research, particularly in composition optimization, property prediction, and phase identification, are systematically reviewed. Special emphasis is placed on cutting-edge deep learning techniques, such as generative models and computer vision, which are revolutionizing the f ield. This study explores the application of machine learning (ML) in developing highly accurate ML interatomic potentials (MLIPs) for molecular dynamics (MD) simulations. These MLIPs have the potential to enhance the accuracy and efficiency of simulations, enabling a more precise representation of the fundamental physics governing high-entropy alloys (HEAs) at the atomic level. A critical discussion is provided, addressing both the potential advantages and the inherent limitations of this approach. This review aims to provide insights into the future directions of ML-driven HEA research, offering a roadmap for advancing material design through data-driven innovation. 
    more » « less
  4. Abstract We discuss the emerging advances and opportunities at the intersection of machine learning (ML) and climate physics, highlighting the use of ML techniques, including supervised, unsupervised, and equation discovery, to accelerate climate knowledge discoveries and simulations. We delineate two distinct yet complementary aspects: (a) ML for climate physics and (b) ML for climate simulations. Although physics-free ML-based models, such as ML-based weather forecasting, have demonstrated success when data are abundant and stationary, the physics knowledge and interpretability of ML models become crucial in the small-data/nonstationary regime to ensure generalizability. Given the absence of observations, the long-term future climate falls into the small-data regime. Therefore, ML for climate physics holds a critical role in addressing the challenges of ML for climate simulations. We emphasize the need for collaboration among climate physics, ML theory, and numerical analysis to achieve reliable ML-based models for climate applications. 
    more » « less
  5. Polymeric membranes have become essential for energy-efficient gas separations such as natural gas sweetening, hydrogen separation, and carbon dioxide capture. Polymeric membranes face challenges like permeability-selectivity tradeoffs, plasticization, and physical aging, limiting their broader applicability. Machine learning (ML) techniques are increasingly used to address these challenges. This review covers current ML applications in polymeric gas separation membrane design, focusing on three key components: polymer data, representation methods, and ML algorithms. Exploring diverse polymer datasets related to gas separation, encompassing experimental, computational, and synthetic data, forms the foundation of ML applications. Various polymer representation methods are discussed, ranging from traditional descriptors and fingerprints to deep learning-based embeddings. Furthermore, we examine diverse ML algorithms applied to gas separation polymers. It provides insights into fundamental concepts such as supervised and unsupervised learning, emphasizing their applications in the context of polymer membranes. The review also extends to advanced ML techniques, including data-centric and model-centric methods, aimed at addressing challenges unique to polymer membranes, focusing on accurate screening and inverse design. 
    more » « less