skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 11 until 2:00 AM ET on Saturday, July 12 due to maintenance. We apologize for the inconvenience.


Title: Low Power Shift and Capture through ATPG-Configured Embedded Enable Capture Bits
Excessive test power can cause multiple issues at manufacturing as well as during field test. To reduce both shift and capture power during test, we propose a DFT-based approach where we split the scan chains into segments and use extra control bits inserted between the segments to determine whether a particular segment will capture. A significant advantage of this approach is that a standard ATPG tool is capable of automatically generating the appropriate values for the control bits in the test patterns. This is true not only for stuck-at fault test sets, but for Launch-off-Capture (LOC) transition tests as well. It eliminates the need for expensive post processing or modification of the ATPG tool. Up to 37% power reduction can be achieved for a stuck-at test set while up to 35% reduction can be achieved for a transition test set for the circuits studied.  more » « less
Award ID(s):
1812777
PAR ID:
10289494
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
International Test Conference (ITC)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Excessive test power can cause multiple issues at manufacturing as well as during field test. To reduce both shift and capture power during test, we propose a DFT-based approach where we split the scan chains into segments and use extra control bits inserted between the segments to determine whether a particular segment will capture. A significant advantage of this approach is that a standard ATPG tool is capable of automatically generating the appropriate values for the control bits in the test patterns. This is true not only for stuck-at fault test sets, but for Launch-off-Capture (LOC) transition tests as well. It eliminates the need for expensive post processing or modification of the ATPG tool. Up to 37% power reduction can be achieved for a stuck-at test set while up to 35% reduction can be achieved for a transition test set for the circuits studied. 
    more » « less
  2. Excessive power during in–field testing can cause multiple issues, including invalidation of the test results, overheating, and damage to the circuit. In this paper, we evaluate the reduction of capture power when specific segments of a scan chain can be kept from capturing data subject to values stored in a control register. The proposed approach requires no changes to the Automatic Test Pattern Generation (ATPG), no redesign of the circuitry to match a particular test set, and no additional patterns to maintain fault coverage. We will show that our approach can achieve very high capture power reduction— approaching 100% for multiple patterns. 
    more » « less
  3. Abstract—Excessive power during in–field testing can cause multiple issues, including invalidation of the test results, overheating, and damage to the circuit. In this paper, we evaluate the reduction of capture power when specific segments of a scan chain can be kept from capturing data subject to values stored in a control register. The proposed approach requires no changes to the Automatic Test Pattern Generation (ATPG), no redesign of the circuitry to match a particular test set, and no additional patterns to maintain fault coverage. We will show that our approach can achieve very high capture power reduction—approaching 100% for multiple patterns. Index Terms—Design for Testability (DFT), Low Power Test, On-Chip Decompressor 
    more » « less
  4. null (Ed.)
    Functional broadside tests were developed to avoid overtesting of delay faults. The tests achieve this goal by creating functional operation conditions during their functional capture cycles. To increase the achievable fault coverage, close-to-functional scan-based tests are allowed to deviate from functional operation conditions. This article suggests that a more comprehensive functional broadside test set can be obtained by replacing target faults that cannot be detected with faults that have similar (but not identical) detection conditions. A more comprehensive functional broadside test set has the advantage that it still maintains functional operation conditions. It covers the test holes created when target faults cannot be detected by detecting similar faults. The article considers the case where the target faults are transition faults. When a standard transition fault, with an extra delay of a single clock cycle, cannot be detected, an unspecified transition fault is used instead. An unspecified transition fault captures the behaviors of transition faults with different extra delays. When this fault cannot be detected, a stuck-at fault is used instead. A stuck-at fault has some of the detection conditions of a transition fault. Multicycle functional broadside tests are used to allow unspecified transition faults to be detected. As a by-product, test compaction also occurs. The structure of the test generation procedure accommodates the complexity of producing functional broadside tests by considering the target as well as replacement faults together. Experimental results for benchmark circuits demonstrate the fault coverage improvements achieved, and the effect on the number of tests. 
    more » « less
  5. null (Ed.)
    A recent work showed that it is possible to transform a single-cycle test for stuck-at faults into a launch-on-shift (LOS) test that is guaranteed to detect the same stuck-at faults without any logic or fault simulation. The LOS test also detects transition faults. This was used for obtaining a compact LOS test set that detects both types of faults. In the scenario where LOS tests are used for both stuck-at and transition faults, this article observes that, under certain conditions, the detection of a stuck-at fault guarantees the detection of a corresponding transition fault. This implies that the two faults are equivalent under LOS tests. Equivalence can be used for reducing the set of target faults for test generation and test compaction. The article develops this notion of equivalence under LOS tests with equal primary input vectors and provides an efficient procedure for identifying it. It presents experimental results to demonstrate that such equivalences exist in benchmark circuits, and shows an unexpected effect on a test compaction procedure. 
    more » « less