Blockchain technology has been recognized as a promising solution to enhance the security and privacy of Internet of Things (IoT) and Edge Computing scenarios. Taking advantage of the Proof-of-Work (PoW) consensus protocol, which solves a computation intensive hashing puzzle, Blockchain ensures the security of the system by establishing a digital ledger. However, the computation intensive PoW favors members possessing more computing power. In the IoT paradigm, fairness in the highly heterogeneous network edge environments must consider devices with various constraints on computation power. Inspired by the advanced features of Digital Twins (DT), an emerging concept that mirrors the lifespan and operational characteristics of physical objects, we propose a novel Miner Twins (MinT) architecture to enable a fair PoW consensus mechanism for blockchains in IoT environments. MinT adopts an edge-fog-cloud hierarchy. All physical miners of the blockchain are deployed as microservices on distributed edge devices, while fog/cloud servers maintain digital twins that periodically update miners’ running status. By timely monitoring of a miner’s footprint that is mirrored by twins, a lightweight Singular Spectrum Analysis (SSA)-based detection achieves the identification of individual misbehaved miners that violate fair mining. Moreover, we also design a novel Proof-of-Behavior (PoB) consensus algorithm to detect dishonest miners that collude to control a fair mining network. A preliminary study is conducted on a proof-of-concept prototype implementation, and experimental evaluation shows the feasibility and effectiveness of the proposed MinT scheme under a distributed byzantine network environment.
more »
« less
Chemistry on the Cloud: From Wet Labs to Web Labs
Digital sensors allow people to collect a large quantity of data in chemistry experiments. Using infrared thermography as an example, we show that this kind of data, in conjunction with videos that stream the chemical phenomena under observation from a vantage point, can be used to construct digital twins of experiments to support science education on the cloud in a visual and interactive fashion. Through digital twins, a significant part of laboratory experiences such as observation, analysis, and discussion can be delivered on a large scale. Thus, the technology can potentially broaden participation in experimental chemistry, especially for students and teachers in underserved communities who may lack the expertise, equipment, and supplies needed to conduct certain experiments. With a cloud platform that enables anyone to store, process, and disseminate experimental data via digital twins, our work also serves as an example to illuminate how the movement of open science, which is largely driven by data sharing, may be powered by technology to amplify its impacts on chemistry education.
more »
« less
- PAR ID:
- 10289751
- Date Published:
- Journal Name:
- Journal of Chemical Education
- ISSN:
- 0021-9584
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
During the COVID-19 pandemic, many students lost opportunities to explore science in labs due to school closures. Remote labs provide a possible solution to mitigate this loss. However, most remote labs to date are based on a somehow centralized model in which experts design and conduct certain types of experiments in well-equipped facilities, with a few options of manipulation provided to remote users. In this paper, we propose a distributed framework, dubbed remote labs 2.0, that offers the flexibility needed to build an open platform to support educators to create, operate, and share their own remote labs. Similar to the transformation of the Web from 1.0 to 2.0, remote labs 2.0 can greatly enrich experimental science on the Internet by allowing users to choose and contribute their subjects and topics. As a reference implementation, we developed a platform branded as Telelab. In collaboration with a high school chemistry teacher, we conducted remote chemical reaction experiments on the Telelab platform with two online classes. Pre/post-test results showed that these high school students attained significant gains (t(26)=8.76, p<0.00001) in evidence-based reasoning abilities. Student surveys revealed three key affordances of Telelab: live experiments, scientific instruments, and social interactions. All 31 respondents were engaged by one or more of these affordances. Students behaviors were characterized by analyzing their interaction data logged by the platform. These findings suggest that appropriate applications of remote labs 2.0 in distance education can, to some extent, reproduce critical effects of their local counterparts on promoting science learning.more » « less
-
A digital twin (DT) is an interactive, real-time digital representation of a system or a service utilizing onboard sensor data and Internet of Things (IoT) technology to gain a better insight into the physical world. With the increasing complexity of systems and products across many sectors, there is an increasing demand for complex systems optimization. Digital twins vary in complexity and are used for managing the performance, health, and status of a physical system by virtualizing it. The creation of digital twins enabled by Modelbased Systems Engineering (MBSE) has aided in increasing system interconnectivity and simplifying the system optimization process. More specifically, the combination of MBSE languages, tools, and methods has served as a starting point in developing digital twins. This article discusses how MBSE has previously facilitated the development of digital twins across various domains, emphasizing both the benefits and disadvantages of adopting an MBSE enabled digital twin creation. Further, the article expands on how various levels of digital twins were generated via the use of MBSE. An MBSE enabled conceptual framework for developing digital twins is identified that can be used as a research testbed for developing digital twins and optimizing systems and system of systems. Keywords—MBSE, Digital Twin, Digital Shadow, Digital Model, SysMLmore » « less
-
A key challenge faced by small and medium-sized business entities is securely managing software updates and changes. Specifically, with rapidly evolving cybersecurity threats, changes/updates/patches to software systems are necessary to stay ahead of emerging threats and are often mandated by regulators or statutory authorities to counter these. However, security patches/updates require stress testing before they can be released in the production system. Stress testing in production environments is risky and poses security threats. Large businesses usually have a non-production environment where such changes can be made and tested before being released into production. Smaller businesses do not have such facilities. In this work, we show how “digital twins”, especially for a mix of IT and IoT environments, can be created on the cloud. These digital twins act as a non-production environment where changes can be applied, and the system can be securely tested before patch release. Additionally, the non-production digital twin can be used to collect system data and run stress tests on the environment, both manually and automatically. In this paper, we show how using a small sample of real data/interactions, Generative Artificial Intelligence (AI) models can be used to generate testing scenarios to check for points of failure.more » « less
-
Digital twins provide a cost-effective means of evaluating performance, predicting network changes, and enhancing network administration and decision-making processes. However, acquiring detailed data for digital twin development remains a challenge due to commercial system constraints. City-scale testbeds, like COSMOS, offer practical solutions, aiding in data collection for modelling of digital twins. In this paper, we utilize data from experiments on the COSMOS testbed to design a digital twin model for the accumulation of gain ripple in cascaded Erbium-doped fiber amplifiers (EDFAs). We quantify the gain ripple in terms of its peak-to-valley ratios and identify optimal EDFA combinations. Moreover, we explore the impact of system parameters, and validate the proposed digital model through comparison with experimental results. We show that the differences between the digital twin predictions and experimental results are <0.1 dB.more » « less