Abstract Study ObjectivesExamine the ability of a physiologically based mathematical model of human circadian rhythms to predict circadian phase, as measured by salivary dim light melatonin onset (DLMO), in children compared to other proxy measurements of circadian phase (bedtime, sleep midpoint, and wake time). MethodsAs part of an ongoing clinical trial, a sample of 29 elementary school children (mean age: 7.4 ± .97 years) completed 7 days of wrist actigraphy before a lab visit to assess DLMO. Hourly salivary melatonin samples were collected under dim light conditions (<5 lx). Data from actigraphy were used to generate predictions of circadian phase using both a physiologically based circadian limit cycle oscillator mathematical model (Hannay model), and published regression equations that utilize average sleep onset, midpoint, and offset to predict DLMO. Agreement of proxy predictions with measured DLMO were assessed and compared. ResultsDLMO predictions using the Hannay model outperformed DLMO predictions based on children’s sleep/wake parameters with a Lin’s Concordance Correlation Coefficient (LinCCC) of 0.79 compared to 0.41–0.59 for sleep/wake parameters. The mean absolute error was 31 min for the Hannay model compared to 35–38 min for the sleep/wake variables. ConclusionOur findings suggest that sleep/wake behaviors were weak proxies of DLMO phase in children, but mathematical models using data collected from wearable data can be used to improve the accuracy of those predictions. Additional research is needed to better adapt these adult models for use in children. Clinical TrialThe i Heart Rhythm Project: Healthy Sleep and Behavioral Rhythms for Obesity Prevention https://clinicaltrials.gov/ct2/show/NCT04445740.
more »
« less
Sensor-Based Estimation of Dim Light Melatonin Onset Using Features of Two Time Scales
Circadian rhythms influence multiple essential biological activities, including sleep, performance, and mood. The dim light melatonin onset (DLMO) is the gold standard for measuring human circadian phase (i.e., timing). The collection of DLMO is expensive and time consuming since multiple saliva or blood samples are required overnight in special conditions, and the samples must then be assayed for melatonin. Recently, several computational approaches have been designed for estimating DLMO. These methods collect daily sampled data (e.g., sleep onset/offset times) or frequently sampled data (e.g., light exposure/skin temperature/physical activity collected every minute) to train learning models for estimating DLMO. One limitation of these studies is that they only leverage one time-scale data. We propose a two-step framework for estimating DLMO using data from both time scales. The first step summarizes data from before the current day, whereas the second step combines this summary with frequently sampled data of the current day. We evaluate three moving average models that input sleep timing data as the first step and use recurrent neural network models as the second step. The results using data from 207 undergraduates show that our two-step model with two time-scale features has statistically significantly lower root-mean-square errors than models that use either daily sampled data or frequently sampled data.
more »
« less
- Award ID(s):
- 1840167
- PAR ID:
- 10289914
- Date Published:
- Journal Name:
- ACM Transactions on Computing for Healthcare
- Volume:
- 2
- Issue:
- 3
- ISSN:
- 2691-1957
- Page Range / eLocation ID:
- 1 to 15
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Fay, Justin C. (Ed.)Circadian rhythms are nearly ubiquitous throughout nature, suggesting they are critical for survival in diverse environments. Organisms inhabiting largely arrhythmic environments, such as caves, offer a unique opportunity to study the evolution of circadian rhythms in response to changing ecological pressures. Populations of the Mexican tetra, Astyanax mexicanus , have repeatedly invaded caves from surface rivers, where individuals must contend with perpetual darkness, reduced food availability, and limited fluctuations in daily environmental cues. To investigate the molecular basis for evolved changes in circadian rhythms, we investigated rhythmic transcription across multiple independently-evolved cavefish populations. Our findings reveal that evolution in a cave environment has led to the repeated disruption of the endogenous biological clock, and its entrainment by light. The circadian transcriptome shows widespread reductions and losses of rhythmic transcription and changes to the timing of the activation/repression of core-transcriptional clock. In addition to dysregulation of the core clock, we find that rhythmic transcription of the melatonin regulator aanat2 and melatonin rhythms are disrupted in cavefish under darkness. Mutants of aanat2 and core clock gene rorca disrupt diurnal regulation of sleep in A . mexicanus , phenocopying circadian modulation of sleep and activity phenotypes of cave populations. Together, these findings reveal multiple independent mechanisms for loss of circadian rhythms in cavefish populations and provide a platform for studying how evolved changes in the biological clock can contribute to variation in sleep and circadian behavior.more » « less
-
ABSTRACT Seasonal changes in sleep/wake cycles and behaviors related to reproduction often co‐occur with seasonal fluctuations in sex hormones. Experimental studies have established that fluctuations in circulating testosterone mediate circadian rhythms. However, most studies are performed under constant lighting conditions and fail to investigate the effects of testosterone on the phenotypic output of circadian rhythms, that is, chronotype (daily activity patterns under light:dark cycles). Here, we experimentally elevated testosterone with implants during short nonbreeding daylengths in male house sparrows (Passer domesticus) to test if observed seasonal changes in chronotype are directly in response to photoperiod or to testosterone. We fitted individuals with accelerometers to track activity across treatment periods. Birds experienced three treatments periods: short day photoperiods before manipulation (SD), followed by testosterone implants while still on short days (SD + T). Implants were then removed. After a decrease in cloacal protuberance size, an indicator of low testosterone levels, birds were then photostimulated on long days (LD). Blood samples were collected at night, when testosterone peaks, to compare testosterone levels to daily onset/offset activity for experimental periods. Our results indicate that experimentally elevated testosterone under short nonbreeding photoperiods significantly advanced daily onset of activity and total daily activity relative to daylength. This suggests that testosterone, independent of photoperiod, is responsible for seasonal shifts in chronotypes and daily activity rhythms. These findings suggest that sex steroid hormone actions regulate timing of daily behaviors, likely coordinating expression of reproductive behaviors to appropriate times of the day.more » « less
-
null (Ed.)In 1965, Dr Harry Angelman reported a neurodevelopmental disorder affecting three unrelated children who had similar symptoms: brachycephaly, mental retardation, ataxia, seizures, protruding tongues, and remarkable paroxysms of laughter. Over the past 50 years, the disorder became Angelman's namesake and symptomology was expanded to include hyper‐activity, stereotypies, and severe sleep disturbances. The sleep disorders in many Angelman syndrome (AS) patients are broadly characterized by difficulty falling and staying asleep at night. Some of these patients sleep less than 4 hours a night and, in most cases, do not make up this lost sleep during the day—leading to the speculation that AS patients may “need” less sleep. Most AS patients also have severely reduced levels of melatonin, a hormone produced by the pineal gland exclusively at night. This nightly pattern of melatonin production is thought to help synchronize internal circadian rhythms and promote nighttime sleep in humans and other diurnal species. It has been proposed that reduced melatonin levels contribute to the sleep problems in AS patients. Indeed, emerging evidence suggests melatonin replacement therapy can improve sleep in many AS patients. However, AS mice show sleep problems that are arguably similar to those in humans despite being on genetic backgrounds that do not make melatonin. This suggests the hypothesis that the change in nighttime melatonin may be a secondary factor rather than the root cause of the sleeping disorder. The goals of this review article are to revisit the sleep and melatonin findings in both AS patients and animal models of AS and discuss what AS may tell us about the underlying mechanisms of, and interplay between, melatonin and sleep.more » « less
-
The synchronization dynamics for the circadian gene expression in the suprachiasmatic nucleus is investigated using a transcriptional circadian clock gene oscillator model. With global coupling in constant dark (DD) conditions, the model exhibits a one-cluster phase synchronized state, in dim light (dim LL), bistability between one- and two-cluster states and in bright LL, a two-cluster state. The two-cluster phase synchronized state, where some oscillator pairs synchronize in-phase, and some anti-phase, can explain the splitting of the circadian clock, i.e., generation of two bouts of daily activities with certain species, e.g., with hamsters. The one- and two-cluster states can be reached by transferring the animal from DD or bright LL to dim LL, i.e., the circadian synchrony has a memory effect. The stability of the one- and two-cluster states was interpreted analytically by extracting phase models from the ordinary differential equation models. In a modular network with two strongly coupled oscillator populations with weak intragroup coupling, with appropriate initial conditions, one group is synchronized to the one-cluster state and the other group to the two-cluster state, resulting in a weak-chimera state. Computational modeling suggests that the daily rhythms in sleep–wake depend on light intensity acting on bilateral networks of suprachiasmatic nucleus (SCN) oscillators. Addition of a network heterogeneity (coupling between the left and right SCN) allowed the system to exhibit chimera states. The simulations can guide experiments in the circadian rhythm research to explore the effect of light intensity on the complexities of circadian desynchronization.more » « less
An official website of the United States government

