skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Can supernova shells feed supermassive black holes in galactic nuclei?
Aims. We simulate shells created by supernovae expanding into the interstellar medium of the nuclear region of a galaxy, and analyze how the shell evolution is influenced by the supernova position relative to the galactic center, by the interstellar matter density, and by the combined gravitational pull of the nuclear star cluster and supermassive black hole (SMBH). Methods. We adopted simplified hydrodynamical simulations using the infinitesimally thin layer approximation in 3D (code RING) and determined whether and where the shell expansion may bring new gas into the inner parsec around the SMBH. Results. The simulations show that supernovae occurring within a conical region around the rotational axis of the galaxy can feed the central accretion disk surrounding the SMBH. For ambient densities between 10 3 and 10 5 cm −3 , the average mass deposited into the central parsec by individual supernovae varies between 10 and 1000 solar masses depending on the ambient density and the spatial distribution of supernova events. Supernovae occurring in the aftermath of a starburst event near a galactic center can supply two to three orders of magnitude more mass into the central parsec, depending on the magnitude of the starburst. The deposited mass typically encounters and joins an accretion disk. The fate of that mass is then divided between the growth of the SMBH and an energetically driven outflow from the disk.  more » « less
Award ID(s):
1909554
PAR ID:
10289981
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
644
ISSN:
0004-6361
Page Range / eLocation ID:
A72
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The disks of active galactic nuclei (AGNs) are expected to be populated by numerous stars, either formed in the outer regions of the disk via gravitational instability or captured from the nearby nuclear star cluster. Regardless of their formation mechanism, these stars experience altered evolutionary paths, mostly shaped by the accretion of dense disk material. In this study, through the comparison of different timescales, we chart the evolutionary outcomes of these AGN stars as a function of disk radius and across a range of supermassive black hole masses, spanning from 106to 109M, for two popular AGN disk models. We find that in the outer regions of the disk, stars evolve similarly to those in the interstellar medium, but in the inner and denser regions, accretion quickly turns low-mass stars into massive stars, and their fate depends on just how quickly they accrete. If accretion occurs at a faster rate than nuclear burning, they can reach a quasi-steady “immortal” state. If stars accrete faster than they can thermally adjust, runaway accretion occurs, potentially preventing a quasi-steady state and altering the disk structure. During the AGN lifetime, in the regions of the disk that produce massive stars, supernovae (SNe) and gamma-ray bursts (GRBs) may occur within the disk over a wide range of optical depths and ambient densities. Subsequently, in the final phase of the AGN, as the disk becomes depleted, formerly immortal stars will be unable to replenish their fuel, leading to additional SNe and GRBs. 
    more » « less
  2. Aims.The scenario of feedback-free starbursts (FFB), which predicts excessively bright galaxies at cosmic dawn as observed using JWST, may provide a natural setting for black hole (BH) growth. This involves the formation of intermediate-mass seed BHs and their runaway mergers into super-massive BHs with high BH-to-stellar mass ratios and low Active Galactic Nucleus (AGN) luminosities. Methods.We present a scenario of merger-driven BH growth in FFB galaxies and study its feasibility. Results.Black hole seeds form within the building blocks of the FFB galaxies, namely, thousands of compact star clusters, each starbursting in a free-fall time of a few million years before the onset of stellar and supernova feedback. The BH seeds form by rapid core collapse in the FFB clusters, in a few free-fall times, which is sped up by the migration of massive stars due to the young, broad stellar mass function and stimulated by a “gravo-gyro” instability due to internal cluster rotation and flattening. BHs of ∼104 Mare expected in ∼106 MFFB clusters within sub-kiloparsec galactic disks atz​ ∼ ​10. The BHs then migrate to the galaxy center by dynamical friction, hastened by the compact FFB stellar galactic disk configuration. Efficient mergers of the BH seeds will produce ∼106 − 8 MBHs with a BH-to-stellar mass ratio ∼0.01 byz​ ∼ ​4 − 7, as observed. The growth of the central BH by mergers can overcome the bottleneck introduced by gravitational wave recoils if the BHs inspiral within a relatively cold disk or if the escape velocity from the galaxy is boosted by a wet compaction event. Such events, common in massive galaxies at high redshifts, can also help by speeding up the inward BH migration and by providing central gas to assist with the final parsec problem. Conclusions.The cold disk version of the FFB scenario provides a feasible route for the formation of supermassive BHs. 
    more » « less
  3. ABSTRACT The way supermassive black holes (SMBHs) in Galactic Centres (GCs) accumulate their mass is not completely determined. At large scales, it is governed by galactic encounters, mass inflows connected to spirals arms and bars, or due to expanding shells from supernova (SN) explosions in the central parts of galaxies. The investigation of the latter process requires an extensive set of gas dynamical simulations to explore the multidimensional parameter space needed to frame the phenomenon. The aims of this paper are to extend our investigation of the importance of SNe for inducing accretion on to an SMBH and carry out a comparison between the fully hydrodynamic code flash and the much less computationally intensive code ring, which uses the thin shell approximation. We simulate 3D expanding shells in a gravitational potential similar to that of the GC with a variety of homogeneous and turbulent environments. In homogeneous media, we find convincing agreement between flash and ring in the shapes of shells and their equivalent radii throughout their whole evolution until they become subsonic. In highly inhomogeneous, turbulent media, there is also a good agreement of shapes and sizes of shells, and of the times of their first contact with the central 1-pc sphere, where we assume that they join the accretion flow. The comparison supports the proposition that an SN occurring at a galactocentric distance of 5 pc typically drives 1–3 M⊙ into the central 1 pc around the GC. 
    more » « less
  4. Abstract A modest fraction of the stars in galactic nuclei fed toward the central supermassive black hole (SMBH) approach on low-eccentricity orbits driven by gravitational-wave radiation (extreme mass ratio inspiral (EMRI)). In the likely event that a gaseous accretion disk is created in the nucleus during this slow inspiral (e.g., via an independent tidal disruption event (TDE)), star–disk collisions generate regular short-lived flares consistent with the observed quasiperiodic eruption (QPE) sources. We present a model for the coupled star-disk evolution, which self-consistently accounts for mass and thermal energy injected into the disk from stellar collisions and associated mass ablation. For weak collision/ablation heating, the disk is thermally unstable and undergoes limit-cycle oscillations, which modulate its properties and lead to accretion-powered outbursts on timescales of years to decades, with a time-averaged accretion rate ∼0.1Ṁ Edd. Stronger collision/ablation heating acts to stabilize the disk, enabling roughly steady accretion at the EMRI-stripping rate. In either case, the stellar destruction time through ablation, and hence the maximum QPE lifetime, is ∼102–103yr, far longer than fallback accretion after a TDE. The quiescent accretion disks in QPE sources may at the present epoch be self-sustaining and fed primarily by EMRI ablation. Indeed, the observed range of secular variability broadly matches those predicted for collision-fed disks. Changes in the QPE recurrence pattern following such outbursts, similar to that observed in GSN 069, could arise from temporary misalignment between the EMRI-fed disk and the SMBH equatorial plane as the former regrows its mass after a state transition. 
    more » « less
  5. Abstract In addition to a supermassive black hole (SMBH), the central parsec of the Milky Way hosts over 100 massive, high-velocity young stars whose existence, and organization of a subset of them in one, or possibly two, misaligned disks, is puzzling. Due to a combination of low medium density and strong tidal forces in the vicinity of Sgr A*, stars are not expected to form. Here we propose a novel scenario for their in situ formation: a jetted tidal disruption event (TDE) from an older wandering star triggers an episode of positive feedback of star formation in the plane perpendicular to the jet, as demonstrated via numerical simulations in the context of jet-induced feedback in galactic outflows. An overpressured cocoon surrounding the jet shock-compresses clumps to densities high enough to resist the SMBH tidal field. The TDE rate of 10−5–10−4yr−1per galaxy, out of which a few percent of events are jetted, implies a jetted TDE event per galaxy to occur every few million years. This timescale is interestingly of the same order of the age of the disk stars. The mass function predicted by our mechanism is top heavy. Additionally, since TDEs are isotropic, our model predicts a random orientation for the disk of stars with respect to the plane of the galaxy and, due to the relatively high TDE rate, can account for multiple disks of stars with uncorrelated orientations. 
    more » « less