skip to main content

Title: Can supernova shells feed supermassive black holes in galactic nuclei?
Aims. We simulate shells created by supernovae expanding into the interstellar medium of the nuclear region of a galaxy, and analyze how the shell evolution is influenced by the supernova position relative to the galactic center, by the interstellar matter density, and by the combined gravitational pull of the nuclear star cluster and supermassive black hole (SMBH). Methods. We adopted simplified hydrodynamical simulations using the infinitesimally thin layer approximation in 3D (code RING) and determined whether and where the shell expansion may bring new gas into the inner parsec around the SMBH. Results. The simulations show that supernovae occurring within a conical region around the rotational axis of the galaxy can feed the central accretion disk surrounding the SMBH. For ambient densities between 10 3 and 10 5 cm −3 , the average mass deposited into the central parsec by individual supernovae varies between 10 and 1000 solar masses depending on the ambient density and the spatial distribution of supernova events. Supernovae occurring in the aftermath of a starburst event near a galactic center can supply two to three orders of magnitude more mass into the central parsec, depending on the magnitude of the starburst. The deposited mass typically encounters more » and joins an accretion disk. The fate of that mass is then divided between the growth of the SMBH and an energetically driven outflow from the disk. « less
; ; ;
Award ID(s):
Publication Date:
Journal Name:
Astronomy & Astrophysics
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT The way supermassive black holes (SMBHs) in Galactic Centres (GCs) accumulate their mass is not completely determined. At large scales, it is governed by galactic encounters, mass inflows connected to spirals arms and bars, or due to expanding shells from supernova (SN) explosions in the central parts of galaxies. The investigation of the latter process requires an extensive set of gas dynamical simulations to explore the multidimensional parameter space needed to frame the phenomenon. The aims of this paper are to extend our investigation of the importance of SNe for inducing accretion on to an SMBH and carry outmore »a comparison between the fully hydrodynamic code flash and the much less computationally intensive code ring, which uses the thin shell approximation. We simulate 3D expanding shells in a gravitational potential similar to that of the GC with a variety of homogeneous and turbulent environments. In homogeneous media, we find convincing agreement between flash and ring in the shapes of shells and their equivalent radii throughout their whole evolution until they become subsonic. In highly inhomogeneous, turbulent media, there is also a good agreement of shapes and sizes of shells, and of the times of their first contact with the central 1-pc sphere, where we assume that they join the accretion flow. The comparison supports the proposition that an SN occurring at a galactocentric distance of 5 pc typically drives 1–3 M⊙ into the central 1 pc around the GC.« less
  2. Abstract Accreting black holes can drive fast and energetic nuclear winds that may be an important feedback mechanism associated with active galactic nuclei (AGN). In this paper, we implement a scheme for capturing feedback from these fast nuclear winds and examine their impact in simulations of isolated disk galaxies. Stellar feedback is modeled using the FIRE physics and produces a realistic multiphase interstellar medium (ISM). We find that AGN winds drive the formation of a low-density, high-temperature central gas cavity that is broadly consistent with analytic model expectations. The effects of AGN feedback on the host galaxy are a strongmore »function of the wind kinetic power and momentum. Low and moderate luminosity AGN do not have a significant effect on their host galaxy: the AGN winds inefficiently couple to the ambient ISM and instead a significant fraction of their energy vents in the polar direction. For such massive black holes, accretion near the Eddington limit can have a dramatic impact on the host galaxy ISM: if AGN wind feedback acts for ≳ 20 − 30 Myr, the inner ∼1 − 10 kpc of the ISM is disrupted and the global galaxy star formation rate is significantly reduced. We quantify the properties of the resulting galaxy-scale outflows and find that the radial momentum in the outflow is boosted by a factor ∼2 − 3 relative to that initially supplied in the AGN wind for strong feedback scenarios, decreasing below unity for less energetic winds. In contrast to observations, however, the outflows are primarily hot, with very little atomic or molecular gas. We conjecture that merging galaxies and high-redshift galaxies, which have more turbulent and thicker disks and very different nuclear gas geometries, may be even more disrupted by AGN winds than found in our simulations.« less
  3. Stellar-mass black holes can become embedded within the gaseous disks of active galactic nuclei (AGNs). Afterwards, their interactions are mediated by their gaseous surroundings. In this work, we study the evolution of stellar-mass binary black holes (BBHs) embedded within AGN disks using a combination of three-dimensional hydrodynamic simulations and analytic methods, focusing on environments in which the AGN disk scale height H is ≳ the BBH sphere of influence. We model the local surroundings of the embedded BBHs using a wind tunnel formalism and characterize different accretion regimes based on the local properties of the disk, which range from wind-dominatedmore »to quasi-spherical. We use our simulations to develop prescriptions for mass accretion and drag for embedded BBHs. We use these prescriptions, along with AGN disk models that can represent the Toomre-unstable outer regions of AGN disks, to study the long-term evolution of the BBHs as they migrate through the disk. We find that BBHs typically merge within ≲5−30Myr , increasing their mass significantly in the process, allowing BBHs to enter (or cross) the pair-instability supernova mass gap. The rate at which gas is supplied to these BBHs often exceeds the Eddington limit, sometimes by several orders of magnitude. We conclude that most embedded BBHs will merge before migrating significantly in the disk. Depending on the conditions of the ambient gas and the distance to the system, LISA can detect the transition between the gas-dominated and gravitational wave dominated regime for inspiraling BBHs that are formed sufficiently close to the AGN ( ≲ 0.1 pc). We also discuss possible electromagnetic signatures during and following the inspiral, finding that it is generally unlikely but not inconceivable for the bolometric luminosity of the BBH to exceed that of the host AGN.« less
  4. As the closest example of a galactic nucleus, the Galactic center (GC) presents an exquisite laboratory for learning about supermassive black holes (SMBH) and their environment. We describe several exciting new research directions that, over the next 10 years, 1 arXiv:1903.05293v1 [astro-ph.GA] 13 Mar 2019 hold the potential to answer some of the biggest scientific questions raised in recent decades: Is General Relativity (GR) the correct description for supermassive black holes? What is the nature of star formation in extreme environments? How do stars and compact objects dynamically interact with the supermassive black hole? What physical processes drive gas accretionmore »in low-luminosity black holes? We describe how the high sensitivity, angular resolution, and astrometric precision offered by the next generation of large ground-based telescopes with adaptive optics will help us answer these questions. First, it will be possible to obtain precision measurements of stellar orbits in the Galaxy’s central potential, providing both tests of GR in the unexplored regime near a SMBH and measurements of the extended dark matter distribution that is predicted to exist at the GC. The orbits of these stars will also allow us to measure the spin of the SMBH. Second, we will probe stellar populations at the GC to significantly lower masses than are possible today, down to the brown dwarf limit. Their structure and dynamics will provide an unprecedented view of the stellar cusp around the SMBH and will distinguish between models of star formation in the extreme environment of galactic nuclei. This increase in depth will also allow us to measure the currently unknown population of compact remnants at the GC by observing their effects on luminous sources. Third, uncertainties on the mass of and distance to the SMBH can be improved by a factor of ∼10. Finally, we can also study the near-infrared accretion onto the black hole at unprecedented sensitivity and time resolution, which can reveal the underlying physics of black hole accretion.« less
  5. The Galactic center region, including the nuclear disk, has until recently been largely avoided in chemical census studies because of extreme extinction and stellar crowding. Large, near-IR spectroscopic surveys, such as the Apache Point Observatory Galactic Evolution Experiment (APOGEE), allow the measurement of metallicities in the inner region of our Galaxy. Making use of the latest APOGEE data release (DR16), we are able for the first time to study cool Asymptotic Giant branch (AGB) stars and supergiants in this region. The stellar parameters of five known AGB stars and one supergiant star (VR 5-7) show that their location is wellmore »above the tip of the red giant branch. We studied metallicities of 157 M giants situated within 150 pc of the Galactic center from observations obtained by the APOGEE survey with reliable stellar parameters from the APOGEE pipeline making use of the cool star grid down to 3200 K. Distances, interstellar extinction values, and radial velocities were checked to confirm that these stars are indeed situated in the Galactic center region. We detect a clear bimodal structure in the metallicity distribution function, with a dominant metal-rich peak of [Fe/H] ∼ +0.3 dex and a metal-poor peak around {Fe/H] = −0.5 dex, which is 0.2 dex poorer than Baade’s Window. The α -elements Mg, Si, Ca, and O show a similar trend to the Galactic bulge. The metal-poor component is enhanced in the α -elements, suggesting that this population could be associated with the classical bulge and a fast formation scenario. We find a clear signature of a rotating nuclear stellar disk and a significant fraction of high-velocity stars with v gal  >  300 km s −1 ; the metal-rich stars show a much higher rotation velocity (∼200 km s −1 ) with respect to the metal-poor stars (∼140 km s −1 ). The chemical abundances as well as the metallicity distribution function suggest that the nuclear stellar disk and the nuclear star cluster show distinct chemical signatures and might be formed differently.« less