Abstract Approaches to macroevolution require integration of its two fundamental components, within a hierarchical framework. Following a companion paper on the origin of variation, I here discuss sorting within an evolutionary hierarchy. Species sorting—sometimes termed species selection in the broad sense, meaning differential origination and extinction owing to intrinsic biological properties—can be split into strict-sense species selection, in which rate differentials are governed by emergent, species-level traits such as geographic range size, and effect macroevolution, in which rates are governed by organism-level traits such as body size; both processes can create hitchhiking effects, indirectly causing the proliferation or decline of other traits. Several methods can operationalize the concept of emergence, so that rigorous separation of these processes is increasingly feasible. A macroevolutionary tradeoff, underlain by the intrinsic traits that influence evolutionary dynamics, causes speciation and extinction rates to covary in many clades, resulting in evolutionary volatility of some clades and more subdued behavior of others; the few clades that break the tradeoff can achieve especially prolific diversification. In addition to intrinsic biological traits at multiple levels, extrinsic events can drive the waxing and waning of clades, and the interaction of traits and events are difficult but important to disentangle. Evolutionarymore »
Cyclic and multilevel causation in evolutionary processes
Abstract Many models of evolution are implicitly causal processes. Features such as causal feedback between evolutionary variables and evolutionary processes acting at multiple levels, though, mean that conventional causal models miss important phenomena. We develop here a general theoretical framework for analyzing evolutionary processes drawing on recent approaches to causal modeling developed in the machine-learning literature, which have extended Pearls do-calculus to incorporate cyclic causal interactions and multilevel causation. We also develop information-theoretic notions necessary to analyze causal information dynamics in our framework, introducing a causal generalization of the Partial Information Decomposition framework. We show how our causal framework helps to clarify conceptual issues in the contexts of complex trait analysis and cancer genetics, including assigning variation in an observed trait to genetic, epigenetic and environmental sources in the presence of epigenetic and environmental feedback processes, and variation in fitness to mutation processes in cancer using a multilevel causal model respectively, as well as relating causally-induced to observed variation in these variables via information theoretic bounds. In the process, we introduce a general class of multilevel causal evolutionary processes which connect evolutionary processes at multiple levels via coarse-graining relationships. Further, we show how a range of fitness models can be more »
- Award ID(s):
- 1660648
- Publication Date:
- NSF-PAR ID:
- 10290036
- Journal Name:
- Biology & Philosophy
- Volume:
- 35
- Issue:
- 5
- ISSN:
- 0169-3867
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Glass, Jennifer B. (Ed.)ABSTRACT The environmental context of the nitrogen-fixing mutualism between leguminous plants and rhizobial bacteria varies over space and time. Variation in resource availability, population density, and composition likely affect the ecology and evolution of rhizobia and their symbiotic interactions with hosts. We examined how host genotype, nitrogen addition, rhizobial density, and community complexity affected selection on 68 rhizobial strains in the Sinorhizobium meliloti – Medicago truncatula mutualism. As expected, host genotype had a substantial effect on the size, number, and strain composition of root nodules (the symbiotic organ). The understudied environmental variable of rhizobial density had a stronger effect on nodule strain frequency than the addition of low nitrogen levels. Higher inoculum density resulted in a nodule community that was less diverse and more beneficial but only in the context of the more selective host genotype. Higher density resulted in more diverse and less beneficial nodule communities with the less selective host. Density effects on strain composition deserve additional scrutiny as they can create feedback between ecological and evolutionary processes. Finally, we found that relative strain rankings were stable across increasing community complexity (2, 3, 8, or 68 strains). This unexpected result suggests that higher-order interactions between strains are raremore »
-
A goal common to several disciplines within earth and life sciences is to understand how earth processes and abiotic conditions shape the diversification and distribution of species on our planet. To develop a mechanistic and detailed understanding of these relationships across taxonomic-geographic settings should inform a set of boundary conditions that describe the geologic and climatic conditions under which new biodiversity is generated along with the organismal traits (e.g., generation time, dispersal ability) that govern why species vary in their evolutionary responses to the same external influences. However, earth and life sciences each encompass a set of highly complex and sometimes nested relationships. This presents a need for new ways to guide the integration of domain knowledge across these complex systems in a way that can generate new hypotheses, facilitate interdisciplinary collaboration, and shape earth-life theory moving forward. Here, I outline the use of causal structures, which are a set of tools to diagram cause-effect relationships at different levels of detail (specification) that include structural equation meta models (SEMMs), causal diagrams (CDs), and structural equation models (SEMs). I will give examples of how to use SEMMs and CDs to detail earth-life relationships, what we can learn from doing so, andmore »
-
Abstract Approaches to macroevolution require integration of its two fundamental components, i.e. the origin and the sorting of variation, in a hierarchical framework. Macroevolution occurs in multiple currencies that are only loosely correlated, notably taxonomic diversity, morphological disparity, and functional variety. The origin of variation within this conceptual framework is increasingly understood in developmental terms, with the semi-hierarchical structure of gene regulatory networks (GRNs, used here in a broad sense incorporating not just the genetic circuitry per se but the factors controlling the timing and location of gene expression and repression), the non-linear relation between magnitude of genetic change and the phenotypic results, the evolutionary potential of co-opting existing GRNs, and developmental responsiveness to nongenetic signals (i.e. epigenetics and plasticity), all requiring modification of standard microevolutionary models, and rendering difficult any simple definition of evolutionary novelty. The developmental factors underlying macroevolution create anisotropic probabilities—i.e., an uneven density distribution—of evolutionary change around any given phenotypic starting point, and the potential for coordinated changes among traits that can accommodate change via epigenetic mechanisms. From this standpoint, “punctuated equilibrium” and “phyletic gradualism” simply represent two cells in a matrix of evolutionary models of phenotypic change, and the origin of trends and evolutionary noveltymore »
-
Background Developers, designers, and researchers use rapid prototyping methods to project the adoption and acceptability of their health intervention technology (HIT) before the technology becomes mature enough to be deployed. Although these methods are useful for gathering feedback that advances the development of HITs, they rarely provide usable evidence that can contribute to our broader understanding of HITs. Objective In this research, we aim to develop and demonstrate a variation of vignette testing that supports developers and designers in evaluating early-stage HIT designs while generating usable evidence for the broader research community. Methods We proposed a method called health concept surveying for untangling the causal relationships that people develop around conceptual HITs. In health concept surveying, investigators gather reactions to design concepts through a scenario-based survey instrument. As the investigator manipulates characteristics related to their HIT, the survey instrument also measures proximal cognitive factors according to a health behavior change model to project how HIT design decisions may affect the adoption and acceptability of an HIT. Responses to the survey instrument were analyzed using path analysis to untangle the causal effects of these factors on the outcome variables. Results We demonstrated health concept surveying in 3 case studies of sensor-basedmore »