skip to main content


Title: LSAMP-NICE: Expanding International STEM Research for Underrepresented Minorities
Background: The global challenges of climate change, disease and hunger exceed national borders as do possibilities of sustained life, exploration and economic development in outer space. Both help to underscore the need for sustained international STEM research to leverage the talent embedded in different countries and in diverse groups within countries. This study focuses on the United States National Science Foundation provision of funds to its Louis Stokes Alliance for Minority Participation (LSAMP) Program to create a National Center of Excellence LSAMP-NICE for the establishment of international STEM Research Partnerships with a particular emphasis on the integration of international collaborative research for underrepresented minority STEM faculty, students and graduates. The study focuses on the diffusion of this Center’s services to the LSAMP Community, a group of 56 LSAMP funded STEM enrichment programs located across the United States. We found that LSAMP-NICE used mass media (a website and two advertorials in a national journal) and an annual national meeting as its major diffusion strategies during its first two years. Forty-two (42) programs responded to the questionnaire. The majority of the respondents (71.4%) had not used the website; 88.1% had not read the Advertorial in Science Magazine; and 78.6% did not attend the national 2019 LSAMP-NICE Annual Meeting in Washington, D.C. Our study suggests a need for additional diffusion techniques to reach the intended audience. Some respondent suggestions for diffusion include participation by LSAMP-NICE representatives at LSAMP Regional Conferences and Symposia, visits by LSAMP-NICE staff to LSAMP programs, forging relationships with higher education institutions abroad so LSAMP students can obtain summer or longer-term research experiences and providing technical assistance on applying for international travel funds.  more » « less
Award ID(s):
2137557 1826824 1826795 1826738
NSF-PAR ID:
10290290
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Frontiers in Education
Volume:
6
ISSN:
2504-284X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The global challenges of climate change, disease, and hunger exceed national borders as do possibilities of sustained life, exploration, and economic development in outer space. Both help to underscore the need for sustained international STEM research to leverage the talent embedded in different countries and in diverse groups within countries. This study focuses on the United States National Science Foundation provision of funds to its Louis Stokes Alliance for Minority Participation (LSAMP) Program to create a National Center of Excellence LSAMP-NICE for the establishment of international STEM Research Partnerships with a particular emphasis on the integration of international collaborative research for underrepresented minority STEM faculty, students and graduates. The study focuses on the diffusion of this Center’s services to the LSAMP Community, a group of 56 LSAMP funded STEM enrichment programs located across the United States. We found that LSAMP-NICE used mass media (a website and two advertorials in a national journal) and an annual national meeting as its major diffusion strategies during its first two years. Forty-two (42) programs responded to the questionnaire. The majority of the respondents (71.4%) had not used the website; 88.1% had not read the Advertorial in ScienceMagazine; and 78.6% did not attend the national 2019 LSAMP-NICE Annual Meeting in Washington, D.C. Our study suggests a need for additional diffusion techniques to reach the intended audience. Some respondent suggestions for diffusion include participation by LSAMP-NICE representatives at LSAMP Regional Conferences and Symposia, visits by LSAMP-NICE staff to LSAMP programs, forging relationships with higher education institutions abroad so LSAMP students can obtain summer or longer-term research experiences, and providing technical assistance on applying for international travel funds. 
    more » « less
  2. Akerson, V. ; Sahin, I. (Ed.)
    The Texas A&M University (TAMU) Louis Stokes Alliance for Minority Participation (LSAMP) office provided funding to the Texas A&M University College of Engineering to support student participation in the Engineering Learning Community Introduction to Research (ELCIR) program. ELCIR is a two-week, study abroad, research program implemented in a learning community pattern. ELCIR has three purposes: (1) to expose sophomores to research, (2) to introduce students to cultural differences and global challenges, and (3) to provide students with the basic tools to prepare them for future research involvement. Participation in the multi-term program, which takes place at TAMU and in the Yucatan Peninsula, is limited to first-generation college students and/or students from underrepresented populations. The external evaluator for TAMU System LSAMP developed a survey for students to complete after their participation in the ELCIR international experience. Survey questions were designed to identify the impact of participation in ELCIR on students and gather participant suggestions for improvement of future LSAMP-supported international research experiences. The evaluator compiled information gathered from 92 participants during five years of ELCIR programming. This paper describes the participants’ self-reports of experience with and continued interest in study abroad, interest in another similar experience, subsequent involvement with undergraduate research, and ELCIR’s impact on their confidence regarding international travel, their awareness of, interest in, and plans regarding graduate school, their educational or career plans, and interest in employment outside the United States. Interest in or increases in interest in international travel, study abroad programming, graduate school, and employment outside the United States were found. These findings can inform engineering education programming for first-generation and minority students, an area of national need, for institutions across the United States. 
    more » « less
  3. The importance of diversifying the national STEM workforce is well-established in the literature (Marrongelle, 2018). This need extends to graduate education in the STEM fields, leading N.C. A&T to invest considerably in graduate education and wraparound support initiatives that help graduate students build science identity and competencies for careers both within and beyond academia. The NSF-funded Bridges to the Doctorate project will integrate culturally reflective mentoring and professional development specifically designed for Black, Latinx, and Native American Ph.D. students. This holistic, graduate student development model includes academic and professional skill-building for STEM careers alongside targeted support for pursuing fellowship opportunities. This paper discusses the planned mentoring approach for the aforementioned program and previous approaches to mentoring graduate students used at N.C. A&T. The BD Fellows program will support formal and informal mentoring relationships, as mentoring contributes towards retention in STEM graduate programs (Ragins, 2007). BD Fellows will participate in monthly one-hour seminars on how to identify, establish, and maintain informal mentoring relationships (Schwartz et al., 2018; Parnes et al., 2020), while STEM faculty will attend seminars on leveraging their social networks as vital sources of mentorship for the BD Fellows. Using a multi-pronged collaborative approach, this model integrates the evidence-based domains of self-efficacy (Laurencelle & Scanlan, 2018; Lent et al., 1994; Lent et al., 2008), science/research identity (Lent et al., 2015; Zimmerman, 2000), and social cognitive career theory (Lent et al., 2005; Lent and Brown, 2006) to recruit, enroll, and graduate LSAMP Fellows with STEM doctoral degrees. Guided by the theories, the following questions will be addressed: (1) To what extent is culturally reflective mentoring identified as a critical driver of B2D Fellows’ success? (2) To what extent are the program’s training components fostering increases in B2D Fellow’s self-efficacy, competency, and science identity? (3) What is the strength of the correlation between participation in the program training components, mentoring activities, and persistence in graduate school? (4) To what extent does the perceived importance of self-efficacy, competency, and science identity differ by race/ethnicity and gender? These data will be analyzed using both formative and summative assessments of program outcomes. Quantitative data will include pre-, post-, and exit surveys. Qualitative data will assess the impact of mentoring and program support. This study will be guided by established protocols that have been approved by the N.C. A&T IRB. It is anticipated that our BD Fellows program will significantly impact the retention and graduation rates of underrepresented minority STEM graduate students in our doctoral programs, thus producing a diverse workforce of STEM professionals. Materials from the program recruiting cycle, mentoring workshops, and the structured fellowship application process will be disseminated freely to other LSAMP and minority-serving institutions across the country. Strategies and outcomes of this project will be published in peer-reviewed journals and shared in conference proceedings. 
    more » « less
  4. The Texas A&M University System (TAMUS) received funding from the National Science Foundation (NSF) for a Louis Stokes Alliance for Minority Participation (LSAMP) project in 1991 as one of the six initial awardees. As part of these efforts and upon reaching eligibility, the TAMUS LSAMP applied for and received additional funding to support a Bridge to the Doctorate (BTD) program. BTD programming provides financial, educational, and social support to incoming STEM master’s degree and PhD students for the first two years of their graduate study. BTD cohorts consist of up to 12 fellows who participate in a program of academic and professional development seminars and workshops. In project evaluation, annual interviews were conducted with the TAMUS BTD participants, the vast majority of whom were underrepresented minorities (92%). During the interviews, the BTD students were asked to discuss ten topics some of which addressed concerns specific to the implementation of the BTD project. This report considers answers provided in the five topic areas which have broader applicability: 1) the learning achieved by participants through participation in BTD, 2) the personal impact of participation in BTD, 3) the influence of BTD on informants’ educational goals, 4) the influence of BTD on informants’ career goals, and 5) barriers the BTD participants perceived to pursuing a PhD. Eighty project participants responded to the questions between 2009 and 2018. They were from eight distinct cohorts of BTD students and represented 32 different areas of STEM specialization. Qualitative analysis of their responses confirmed that students perceived the elements of the TAMUS BTD project to be efficacious and that there was a set of nine seminars from which participants consistently reported benefit. Additional findings were eight key areas in which learning was reported by participants, four areas in which the programming  had personal impact, five influences on educational goals,  nine impacts on career goals, and a detailed list of barriers graduate students who are underrepresented minorities (URM) perceive to pursuing a doctoral degree. The proven and easily replicated pattern of support programming, the demonstrated results of this programming, and insight into barriers URMs perceive to pursuing a STEM doctorate are immediately applicable to URM graduate student support at many institutions of higher education. 
    more » « less
  5. Graduate training often takes a monodisciplinary approach that is not informed by best practices, ignores the needs and preferences of students, and overlooks the increasingly interdisciplinary and international nature of research. This is unfortunate, particularly since graduate education that is fully integrated with interdisciplinary research can help students become part of a trained and diverse workforce equipped to meet society’s many challenges. Against this backdrop, a National Science Foundation Research Traineeship (NRT) program is being established at the University of Kentucky leveraging the most effective instruments for the training of STEM professionals, such as network-based graduate student mentoring and career preparation encompassing both technical and professional skillsets. Briefly, the training graduate students will receive – in a way that is fully integrated with the research they perform – includes: 1) tools such as individual development plans and developmental network maps; 2) a multi-departmental and interdisciplinary course on research-related content; 3) a seminar course on transferrable skills (ethics, research, communication, teaching, mentoring, entrepreneurship, teamwork, management, leadership, outreach, etc.); 4) a certificate to be awarded once students complete the two courses above and garner additional credits from an interdisciplinary curriculum of research-related courses; 5) summer internships at other departments and at external institutions (other universities, industry, national laboratories) nationwide or abroad; 6) an annual research-related symposium including all elements of a scientific conference; 7) internal collaborative research grants for participants to fund and pursue their own ideas; 8) fields trips to facilities related to the research; and 9) coaching on job hunting as well as résumé, motivation letter and interview preparation. Since a workforce equipped to meet society’s challenges must be both well trained and diverse, multiple initiatives will ensure that this NRT will broaden participation in STEM. Recruitment-wise, close collaboration with a number of entities will provide this NRT with a broad recruitment pool of talented and diverse students. Moreover, collaboration with these entities will provide trainees with ample opportunities to acquire, practice and refine their professional skills, as trainees present their results and recruit in conferences, meetings and outreach events organized by these entities, become members and/or join their leadership, and expand their professional and mentoring network in the process. In addition, minority trainees will be surveyed periodically to probe their feelings of well-being, preparation, acceptance, belonging and distress, as well as their perception of how well structured their departments and programs are. According to recent literature, these factors determine whether or not they perform (i.e., publish) at rates comparable to their male majority peers. Saliently, the evaluation of the educational model employed will afford a comprehensive understanding not only of the academy components that were more utilized and impactful, but will reveal the individual mentoring and skill-building facets of the program driving its successful implementation. The evaluation plan includes outcomes, performance measures, an evaluation timetable, benchmarks and a description of how formative evaluation will improve practice, the evaluation process also extending to research activities. 
    more » « less