Abstract Darwin’s bark spider (Caerostris darwini) produces giant orb webs from dragline silk that can be twice as tough as other silks, making it the toughest biological material. This extreme toughness comes from increased extensibility relative to other draglines. We showC. darwinidragline-producing major ampullate (MA) glands highly express a novel silk gene transcript (MaSp4) encoding a protein that diverges markedly from closely related proteins and contains abundant proline, known to confer silk extensibility, in a unique GPGPQ amino acid motif. This suggestsC. darwinievolved distinct proteins that may have increased its dragline’s toughness, enabling giant webs.Caerostris darwini’sMA spinning ducts also appear unusually long, potentially facilitating alignment of silk proteins into extremely tough fibers. Thus, a suite of novel traits from the level of genes to spinning physiology to silk biomechanics are associated with the unique ecology of Darwin’s bark spider, presenting innovative designs for engineering biomaterials.
more »
« less
Correlation between protein secondary structure and mechanical performance for the ultra-tough dragline silk of Darwin's bark spider
The spider major ampullate (MA) silk exhibits high tensile strength and extensibility and is typically a blend of MaSp1 and MaSp2 proteins with the latter comprising glycine–proline–glycine–glycine-X repeating motifs that promote extensibility and supercontraction. The MA silk from Darwin's bark spider ( Caerostris darwini ) is estimated to be two to three times tougher than the MA silk from other spider species. Previous research suggests that a unique MaSp4 protein incorporates proline into a novel glycine–proline–glycine–proline motif and may explain C. darwini MA silk's extraordinary toughness. However, no direct correlation has been made between the silk's molecular structure and its mechanical properties for C. darwini . Here, we correlate the relative protein secondary structure composition of MA silk from C. darwini and four other spider species with mechanical properties before and after supercontraction to understand the effect of the additional MaSp4 protein. Our results demonstrate that C. darwini MA silk possesses a unique protein composition with a lower ratio of helices (31%) and β-sheets (20%) than other species. Before supercontraction, toughness, modulus and tensile strength correlate with percentages of β-sheets, unordered or random coiled regions and β-turns. However, after supercontraction, only modulus and strain at break correlate with percentages of β-sheets and β-turns. Our study highlights that additional information including crystal size and crystal and chain orientation is necessary to build a complete structure–property correlation model.
more »
« less
- PAR ID:
- 10290460
- Date Published:
- Journal Name:
- Journal of The Royal Society Interface
- Volume:
- 18
- Issue:
- 179
- ISSN:
- 1742-5662
- Page Range / eLocation ID:
- 20210320
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Spiders amplify their physical capabilities by synthesizing multiple high performing silks. Renowned for its toughness, major ampullate (MA) silk composes the spiderweb frame, providing support and absorbing high-energy impacts. In ecribellate orb-weavers, proline-rich motifs in MaSp2 proteins of MA silk are linked to a range of mechanical properties, including extensibility, elasticity, stiffness, and supercontraction. We show a modification of these motifs outside of this clade in a spider that constructs a spring-loaded web. The triangle weaver spider Hyptiotes cavatus (family Uloboridae) stores energy in the support lines of its triangular web, then rapidly releases the tension to catapult forward, collapsing the web around prey. Hyptiotes has an expanded set of MaSp2 genes which encode proteins with far higher proline contents than typical MaSp2. The predominant GPGPQ motifs present in Hyptiotes spidroins also occur abundantly in MaSp sequences of distantly related spiders that produce the most extensible dragline, implying silk protein convergence. Proline-rich MaSp2 proteins constitute half of all MA gland expression in Hyptiotes, and we show that the resulting fibers are the most proline-rich spider silk measured to date. This unique silk composition suggests a functional importance that may facilitate the spring-loaded prey capture mechanism of this species' web and may inspire the design of novel biomaterials using protein engineering.more » « less
-
This study introduces a simple and environmentally friendly method to synthesize silica-protein nanocomposite materials using microwave energy to solubilize hydrophobic protein in an aqueous solution of pre-hydrolyzed organo- or fluoro-silane. Sol-gel functionality can be enhanced through biomacromolecule incorporation to tune mechanical properties, surface energy, and biocompatibility. Here, synthetic spider silk protein and organo- and fluoro-silane precursors were dissolved and mixed in weakly acidic aqueous solution using microwave technology. Scanning electron microscopy (SEM) and Atomic force microscopy (AFM) images revealed the formation of spherical nanoparticles with sizes ranging from 100 to 500 nm depending, in part, on silane fluoro- or organo-side chain chemistry. The silane-protein interaction in the nanocomposite was assessed through infrared spectroscopy. Deconvoluted ATR-FTIR (Attenuated total reflectance Fourier-transform infrared spectroscopy) spectra revealed silane chemistry-specific conformational changes in the protein-silane nanocomposites. Relative to microwave-solubilized spider silk protein, the β structure content increased by 14% in the spider silk-organo-silica nanocomposites, but decreased by a net 20% in the spider silk-fluoro-silica nanocomposites. Methods of tuning the secondary structures, and in particular β-sheets that are the cross-linking moieties in spider silks and other self-assembling fibrillar proteins, may provide a unique means to promote protein interactions, favor subsequent epitaxial growth process, and enhance the properties of the protein-silane nanocomposites.more » « less
-
Abstract Spider dragline silk is known for its exceptional strength and toughness; hence understanding the link between its primary sequence and mechanics is crucial. Here, we establish a deep-learning framework to clarify this link in dragline silk. The method utilizes sequence and mechanical property data of dragline spider silk as well as enriching descriptors such as residue-level mobility (B-factor) predictions. Our sequence representation captures the relative position, repetitiveness, as well as descriptors of amino acids that serve to physically enrich the model. We obtain high Pearson correlation coefficients (0.76–0.88) for strength, toughness, and other properties, which show that our B-factor based representation outperforms pure sequence-based models or models that use other descriptors. We prove the utility of our framework by identifying influential motifs and demonstrating how the B-factor serves to pinpoint potential mutations that improve strength and toughness, thereby establishing a validated, predictive, and interpretable sequence model for designing tailored biomaterials.more » « less
-
Abstract Cribellate silks, produced by ancient spiders, are fascinating because they feature a highly sophisticated, 3D hierarchical structure consisting of filaments with different diameters and shapes. Here, the smallest and thinnest constituents of the cribellate silk are investigated: nanofibrils that form a dense mesh that is supported by larger fibers. Analysis of their structure via atomic force and transmission electron microscopies shows that they are flattened fibrils, only ≈5 nm thick — thinner than any other natural spider silk fibrils previously reported. In this work, the first mechanical tensile testing experiments on these fibrils are carried out, which reveals that the fibrils show an outstanding extensibility of at least 1100%, almost twice as much as the most stretchable spider silk previously reported. Based on these extraordinary findings, this work significantly expands the parameter space of materials properties attainable by spider silks and provides further insights into their nanomechanics.more » « less
An official website of the United States government

