skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Narrow and Brittle or Broad and Nimble? Comparing Adaptive Capacity in Simplifying and Diversifying Farming Systems
Humanity faces a triple threat of climate change, biodiversity loss, and global food insecurity. In response, increasing the general adaptive capacity of farming systems is essential. We identify two divergent strategies for building adaptive capacity. Simplifying processes seek to narrowly maximize production by shifting the basis of agricultural production toward centralized control of socially and ecologically homogenized systems. Diversifying processes cultivate social-ecological complexity in order to provide multiple ecosystem services, maintain management flexibility, and promote coordinated adaptation across levels. Through five primarily United States focused cases of distinct agricultural challenges—foodborne pathogens, drought, marginal lands, labor availability, and land access and tenure—we compare simplifying and diversifying responses to assess how these pathways differentially enhance or degrade the adaptive capacity of farming systems in the context of the triple threat. These cases show that diversifying processes can weave a form of broad and nimble adaptive capacity that is fundamentally distinct from the narrow and brittle adaptive capacity produced through simplification. We find that while there are structural limitations and tradeoffs to diversifying processes, adaptive capacity can be facilitated by empowering people and enhancing ecosystem functionality to proactively distribute resources and knowledge where needed and to nimbly respond to changing circumstances. Our cases suggest that, in order to garner the most adaptive benefits from diversification, farming systems should balance the pursuit of multiple goals, which in turn requires an inclusive process for active dialogue and negotiation among diverse perspectives. Instead of locking farming systems into pernicious cycles that reproduce social and ecological externalities, diversification processes can enable nimble responses to a broad spectrum of possible stressors and shocks, while also promoting social equity and ecological sustainability.  more » « less
Award ID(s):
1824871
PAR ID:
10290520
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Sustainable Food Systems
Volume:
5
ISSN:
2571-581X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The concept of adaptive capacity has received significant attention within social-ecological and environmental change research. Within both the resilience and vulnerability literatures specifically, adaptive capacity has emerged as a fundamental concept for assessing the ability of social-ecological systems to adapt to environmental change. Although methods and indicators used to evaluate adaptive capacity are broad, the focus of existing scholarship has predominately been at the individual- and household- levels. However, the capacities necessary for humans to adapt to global environmental change are often a function of individual and societal characteristics, as well as cumulative and emergent capacities across communities and jurisdictions. In this paper, we apply a systematic literature review and co-citation analysis to investigate empirical research on adaptive capacity that focus on societal levels beyond the household. Our review demonstrates that assessments of adaptive capacity at higher societal levels are increasing in frequency, yet vary widely in approach, framing, and results; analyses focus on adaptive capacity at many different levels (e.g. community, municipality, global region), geographic locations, and cover multiple types of disturbances and their impacts across sectors. We also found that there are considerable challenges with regard to the ‘fit’ between data collected and analytical methods used in adequately capturing the cross-scale and cross-level determinants of adaptive capacity. Current approaches to assessing adaptive capacity at societal levels beyond the household tend to simply aggregate individual- or household-level data, which we argue oversimplifies and ignores the inherent interactions within and across societal levels of decision-making that shape the capacity of humans to adapt to environmental change across multiple scales. In order for future adaptive capacity research to be more practice-oriented and effectively guide policy, there is a need to develop indicators and assessments that are matched with the levels of potential policy applications. 
    more » « less
  2. Coastal ecosystems and human communities are threatened worldwide by climate change, and shocks from social, market and political change. There is an urgent global need to promote resilient food production and livelihoods in the face of these shocks. Small-scale fisheries (SSF) in rural settings can be particularly vulnerable as they frequently lack the resources, rights and infrastructure to respond to shocks originating outside the focal systems. We examined ecological and social outcomes of environmental extremes in a SSF socio-ecological system (SES) by using long-term oceanographic (between 2010-2019) and ecological (2006-2018) data tracking change in a kelp forest ecosystem of Baja California, Mexico, and concurrent documentation of proactive and reactive actions of a fishing community organized in a cooperative. Results indicate a complex landscape of ‘winners’ and ‘losers’ among species and fisheries exposed to unprecedented environmental extremes, including marine heat waves and prolonged hypoxia, and a suite of adaptive actions by the local fishing cooperative, and others in the region, that have helped confront these rapid and drastic changes. Cooperatives have established voluntary marine reserves to promote recovery of affected populations and have invested in diversification of activities enabled by access rights, collective decision-making, and participatory science programs. Results indicate that local actions can support social and ecological resilience in the face of shocks, and that enabling locally-driven adaptation pathways is critical to resilience. This case study highlights the crucial importance of strengthening and supporting rights, governance, capacity, flexibility, learning, and agency for coastal communities to respond to change and sustain their livelihoods and ecosystems in the long run. 
    more » « less
  3. null (Ed.)
    Sustainable provisioning of energy to society requires consideration of the nexus between food–energy–water (FEW) flows while meeting human needs and respecting nature's capacity to provide goods and services. In this work, we explore the FEW nexus of conventional and techno-ecologically synergistic (TES) systems by evaluating combinations of various technological, agricultural, and ecological strategies from the viewpoints of electricity generation, food production, life cycle water use, carbon footprint, nutrient runoff, corporate profitability, and societal well-being. We evaluate activities related to power generation (coal and gas extraction and use, transportation options, cooling technologies, solar panels, wind turbines), food production (farming with and without tillage), waste utilization (carbon dioxide capture and conversion to hydrocarbons, green hydrogen), and ecological restoration (forests and wetlands). Application of this framework to the Muskingum River watershed in Ohio, U.S.A. indicates that seeking synergies between human and natural systems can provide innovative solutions that improve the FEW nexus while making positive contributions to society with greater respect for nature's limits. We show that the conventional engineering approach of relying only on technological approaches for meeting sustainability objectives can have limited environmental and societal benefits while reducing profitability. In contrast, techno-ecologically synergistic design between agricultural systems and wetlands can reduce nutrient runoff with little compromise in other goals. Additional synergies between farming and photovoltaic systems along with the use of wetlands can further improve the FEW nexus while reducing CO 2 and nutrient emissions, with a relatively small compromise in corporate profitability. These results should motivate further work on innovative TES designs that can provide “win–win” solutions for meeting global energy needs in an environmentally and socially beneficial manner. 
    more » « less
  4. Abstract Adaptive management is an approach for stewardship of social–ecological systems in circumstances with high uncertainty and high controllability. Although they are largely overlooked in adaptive management (and social–ecological system management), it is important to account for spatial and temporal scales to mediate within- and cross-scale effects of management actions, because cross-scale interactions increase uncertainty and can lead to undesirable consequences. The iterative nature of an adaptive approach can be expanded to multiple scales to accommodate different stakeholder priorities and multiple ecosystem attributes. In this Forum, we introduce multiscale adaptive management of social–ecological systems, which merges adaptive management with panarchy (a multiscale model of social–ecological systems) and demonstrate the importance of this approach with case studies from the Great Plains of North America and the Platte River Basin, in the United States. Adaptive management combined with a focus on the panarchy model of social–ecological systems can help to improve the management of social–ecological systems. 
    more » « less
  5. null (Ed.)
    Agricultural landscapes in North America have developed through complex interactions of biophysical, socioeconomic and technological forces. While they can be highly productive, these landscapes are increasingly simplified, causing biodiversity loss. As a result, ecosystem services associated with biodiversity are being dismantled. Agricultural landscape structure arises from collective decisions of farmers over long time periods, which are usually not intentionally coordinated beyond the farm scale. Regaining ecosystem services will require active efforts to intentionally redesign landscapes, in part based on ecological evidence about relationships between landscape structure and ecosystem services. Here we focus on services provided by arthropods and how to foster them at landscape scales. We first provide a brief history of how agricultural landscape structure in temperate North America developed and review the landscape-scale ecological drivers underpinning arthropod-based ecosystem services. We then propose ecological and social principles for designing agricultural landscapes, based on the ecological evidence we reviewed and on previous efforts in agricultural landscape design. Finally, we look ahead to discern prospects for putting agricultural landscape design into practice, including ecological, technological and policy opportunities. To reap benefits from arthropod-based services, future agricultural landscapes will need to increase in structural heterogeneity and diversity across multiple dimensions including crop, farmer and consumer diversity. A number of knowledge gaps persist, including how to design landscapes at spatial scales that are relevant to service providers, identifying areas of overlap or conflict between design for ecosystem services and for biodiversity conservation more broadly and navigating the social and political processes needed to implement landscape design. 
    more » « less