skip to main content

Title: Quantifying asymptomatic infection and transmission of COVID-19 in New York City using observed cases, serology, and testing capacity
The contributions of asymptomatic infections to herd immunity and community transmission are key to the resurgence and control of COVID-19, but are difficult to estimate using current models that ignore changes in testing capacity. Using a model that incorporates daily testing information fit to the case and serology data from New York City, we show that the proportion of symptomatic cases is low, ranging from 13 to 18%, and that the reproductive number may be larger than often assumed. Asymptomatic infections contribute substantially to herd immunity, and to community transmission together with presymptomatic ones. If asymptomatic infections transmit at similar rates as symptomatic ones, the overall reproductive number across all classes is larger than often assumed, with estimates ranging from 3.2 to 4.4. If they transmit poorly, then symptomatic cases have a larger reproductive number ranging from 3.9 to 8.1. Even in this regime, presymptomatic and asymptomatic cases together comprise at least 50% of the force of infection at the outbreak peak. We find no regimes in which all infection subpopulations have reproductive numbers lower than three. These findings elucidate the uncertainty that current case and serology data cannot resolve, despite consideration of different model structures. They also emphasize how more » temporal data on testing can reduce and better define this uncertainty, as we move forward through longer surveillance and second epidemic waves. Complementary information is required to determine the transmissibility of asymptomatic cases, which we discuss. Regardless, current assumptions about the basic reproductive number of severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) should be reconsidered. « less
Authors:
; ;
Award ID(s):
1735359
Publication Date:
NSF-PAR ID:
10290531
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
118
Issue:
9
Page Range or eLocation-ID:
e2019716118
ISSN:
0027-8424
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background The COVID-19 outbreak in Wuhan started in December 2019 and was under control by the end of March 2020 with a total of 50,006 confirmed cases by the implementation of a series of nonpharmaceutical interventions (NPIs) including unprecedented lockdown of the city. This study analyzes the complete outbreak data from Wuhan, assesses the impact of these public health interventions, and estimates the asymptomatic, undetected and total cases for the COVID-19 outbreak in Wuhan. Methods By taking different stages of the outbreak into account, we developed a time-dependent compartmental model to describe the dynamics of disease transmission and casemore »detection and reporting. Model coefficients were parameterized by using the reported cases and following key events and escalated control strategies. Then the model was used to calibrate the complete outbreak data by using the Monte Carlo Markov Chain (MCMC) method. Finally we used the model to estimate asymptomatic and undetected cases and approximate the overall antibody prevalence level. Results We found that the transmission rate between Jan 24 and Feb 1, 2020, was twice as large as that before the lockdown on Jan 23 and 67.6 % (95% CI [0.584,0.759]) of detectable infections occurred during this period. Based on the reported estimates that around 20% of infections were asymptomatic and their transmission ability was about 70% of symptomatic ones, we estimated that there were about 14,448 asymptomatic and undetected cases (95% CI [12,364,23,254]), which yields an estimate of a total of 64,454 infected cases (95% CI [62,370,73,260]), and the overall antibody prevalence level in the population of Wuhan was 0.745% (95% CI [0.693 % ,0.814 % ]) by March 31, 2020. Conclusions We conclude that the control of the COVID-19 outbreak in Wuhan was achieved via the enforcement of a combination of multiple NPIs: the lockdown on Jan 23, the stay-at-home order on Feb 2, the massive isolation of all symptomatic individuals via newly constructed special shelter hospitals on Feb 6, and the large scale screening process on Feb 18. Our results indicate that the population in Wuhan is far away from establishing herd immunity and provide insights for other affected countries and regions in designing control strategies and planing vaccination programs.« less
  2. Since the emergence of coronavirus disease 2019 (COVID-19), unprecedented movement restrictions and social distancing measures have been implemented worldwide. The socioeconomic repercussions have fueled calls to lift these measures. In the absence of population-wide restrictions, isolation of infected individuals is key to curtailing transmission. However, the effectiveness of symptom-based isolation in preventing a resurgence depends on the extent of presymptomatic and asymptomatic transmission. We evaluate the contribution of presymptomatic and asymptomatic transmission based on recent individual-level data regarding infectiousness prior to symptom onset and the asymptomatic proportion among all infections. We found that the majority of incidences may be attributablemore »to silent transmission from a combination of the presymptomatic stage and asymptomatic infections. Consequently, even if all symptomatic cases are isolated, a vast outbreak may nonetheless unfold. We further quantified the effect of isolating silent infections in addition to symptomatic cases, finding that over one-third of silent infections must be isolated to suppress a future outbreak below 1% of the population. Our results indicate that symptom-based isolation must be supplemented by rapid contact tracing and testing that identifies asymptomatic and presymptomatic cases, in order to safely lift current restrictions and minimize the risk of resurgence.« less
  3. Funk, Sebastian (Ed.)
    Simultaneously controlling COVID-19 epidemics and limiting economic and societal impacts presents a difficult challenge, especially with limited public health budgets. Testing, contact tracing, and isolating/quarantining is a key strategy that has been used to reduce transmission of SARS-CoV-2, the virus that causes COVID-19 and other pathogens. However, manual contact tracing is a time-consuming process and as case numbers increase a smaller fraction of cases’ contacts can be traced, leading to additional virus spread. Delays between symptom onset and being tested (and receiving results), and a low fraction of symptomatic cases being tested and traced can also reduce the impact ofmore »contact tracing on transmission. We examined the relationship between increasing cases and delays and the pathogen reproductive number R t , and the implications for infection dynamics using deterministic and stochastic compartmental models of SARS-CoV-2. We found that R t increased sigmoidally with the number of cases due to decreasing contact tracing efficacy. This relationship results in accelerating epidemics because R t initially increases, rather than declines, as infections increase. Shifting contact tracers from locations with high and low case burdens relative to capacity to locations with intermediate case burdens maximizes their impact in reducing R t (but minimizing total infections may be more complicated). Contact tracing efficacy decreased sharply with increasing delays between symptom onset and tracing and with lower fraction of symptomatic infections being tested. Finally, testing and tracing reductions in R t can sometimes greatly delay epidemics due to the highly heterogeneous transmission dynamics of SARS-CoV-2. These results demonstrate the importance of having an expandable or mobile team of contact tracers that can be used to control surges in cases. They also highlight the synergistic value of high capacity, easy access testing and rapid turn-around of testing results, and outreach efforts to encourage symptomatic cases to be tested immediately after symptom onset.« less
  4. Background: Our objective was to examine the temporal relationship between COVID-19 infections among prison staff, incarcerated individuals, and the general population in the county where the prison is located among federal prisons in the United States. Methods: We employed population-standardized regressions with fixed effects for prisons to predict the number of active cases of COVID-19 among incarcerated persons using data from the Federal Bureau of Prisons (BOP) for the months of March to December in 2020 for 63 prisons. Results: There is a significant relationship between the COVID-19 prevalence among staff, and through them, the larger community, and COVID-19 prevalencemore »among incarcerated persons in the US federal prison system. When staff rates are low or at zero, COVID-19 incidence in the larger community continues to have an association with COVID-19 prevalence among incarcerated persons, suggesting possible pre-symptomatic and asymptomatic transmission by staff. Masking policies slightly reduced COVID-19 prevalence among incarcerated persons, though the association between infections among staff, the community, and incarcerated persons remained significant and strong. Conclusion: The relationship between COVID-19 infections among staff and incarcerated persons shows that staff is vital to infection control, and correctional administrators should also focus infection containment efforts on staff, in addition to incarcerated persons.« less
  5. Abstract Objective: Current COVID-19 guidelines recommend symptom-based screening and regular nasopharyngeal (NP) testing for healthcare personnel in high-risk settings. We sought to estimate case detection percentages with various routine NP and saliva testing frequencies. Design: Simulation modeling study. Methods: We constructed a sensitivity function based on the average infectiousness profile of symptomatic coronavirus disease 2019 (COVID-19) cases to determine the probability of being identified at the time of testing. This function was fitted to reported data on the percent positivity of symptomatic COVID-19 patients using NP testing. We then simulated a routine testing program with different NP and saliva testingmore »frequencies to determine case detection percentages during the infectious period, as well as the presymptomatic stage. Results: Routine biweekly NP testing, once every 2 weeks, identified an average of 90.7% (SD, 0.18) of cases during the infectious period and 19.7% (SD, 0.98) during the presymptomatic stage. With a weekly NP testing frequency, the corresponding case detection percentages were 95.9% (SD, 0.18) and 32.9% (SD, 1.23), respectively. A 5-day saliva testing schedule had a similar case detection percentage as weekly NP testing during the infectious period, but identified ~10% more cases (mean, 42.5%; SD, 1.10) during the presymptomatic stage. Conclusion: Our findings highlight the utility of routine noninvasive saliva testing for frontline healthcare workers to protect vulnerable patient populations. A 5-day saliva testing schedule should be considered to help identify silent infections and prevent outbreaks in nursing homes and healthcare facilities.« less