skip to main content


Title: simplePHENOTYPES: SIMulation of pleiotropic, linked and epistatic phenotypes
Abstract Background Advances in genotyping and phenotyping techniques have enabled the acquisition of a great amount of data. Consequently, there is an interest in multivariate statistical analyses that identify genomic regions likely to contain causal mutations affecting multiple traits (i.e., pleiotropy). As the demand for multivariate analyses increases, it is imperative that optimal tools are available to assess their performance. To facilitate the testing and validation of these multivariate approaches, we developed simplePHENOTYPES, an R/CRAN package that simulates pleiotropy, partial pleiotropy, and spurious pleiotropy in a wide range of genetic architectures, including additive, dominance and epistatic models. Results We illustrate simplePHENOTYPES’ ability to simulate thousands of phenotypes in less than one minute. We then provide two vignettes illustrating how to simulate sets of correlated traits in simplePHENOTYPES. Finally, we demonstrate the use of results from simplePHENOTYPES in a standard GWAS software, as well as the equivalence of simulated phenotypes from simplePHENOTYPES and other packages with similar capabilities. Conclusions simplePHENOTYPES is a R/CRAN package that makes it possible to simulate multiple traits controlled by loci with varying degrees of pleiotropy. Its ability to interface with both commonly-used marker data formats and downstream quantitative genetics software and packages should facilitate a rigorous assessment of both existing and emerging statistical GWAS and GS approaches. simplePHENOTYPES is also available at https://github.com/samuelbfernandes/simplePHENOTYPES .  more » « less
Award ID(s):
1733606
NSF-PAR ID:
10290581
Author(s) / Creator(s):
;
Date Published:
Journal Name:
BMC Bioinformatics
Volume:
21
Issue:
1
ISSN:
1471-2105
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Schwartz, Russell (Ed.)
    Abstract Motivation While gene–environment (GxE) interactions contribute importantly to many different phenotypes, detecting such interactions requires well-powered studies and has proven difficult. To address this, we combine two approaches to improve GxE power: simultaneously evaluating multiple phenotypes and using a two-step analysis approach. Previous work shows that the power to identify a main genetic effect can be improved by simultaneously analyzing multiple related phenotypes. For a univariate phenotype, two-step methods produce higher power for detecting a GxE interaction compared to single step analysis. Therefore, we propose a two-step approach to test for an overall GxE effect for multiple phenotypes. Results Using simulations we demonstrate that, when more than one phenotype has GxE effect (i.e. GxE pleiotropy), our approach offers substantial gain in power (18–43%) to detect an aggregate-level GxE effect for a multivariate phenotype compared to an analogous two-step method to identify GxE effect for a univariate phenotype. We applied the proposed approach to simultaneously analyze three lipids, LDL, HDL and Triglyceride with the frequency of alcohol consumption as environmental factor in the UK Biobank. The method identified two loci with an overall GxE effect on the vector of lipids, one of which was missed by the competing approaches. Availability and implementation We provide an R package MPGE implementing the proposed approach which is available from CRAN: https://cran.r-project.org/web/packages/MPGE/index.html Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less
  2. null (Ed.)
    Quantification of the simultaneous contributions of loci to multiple traits, a phenomenon called pleiotropy, is facilitated by the increased availability of high-throughput genotypic and phenotypic data. To understand the prevalence and nature of pleiotropy, the ability of multivariate and univariate genome-wide association study (GWAS) models to distinguish between pleiotropic and non-pleiotropic loci in linkage disequilibrium (LD) first needs to be evaluated. Therefore, we used publicly available maize and soybean genotypic data to simulate multiple pairs of traits that were either (i) controlled by quantitative trait nucleotides (QTNs) on separate chromosomes, (ii) controlled by QTNs in various degrees of LD with each other, or (iii) controlled by a single pleiotropic QTN. We showed that multivariate GWAS could not distinguish between QTNs in LD and a single pleiotropic QTN. In contrast, a unique QTN detection rate pattern was observed for univariate GWAS whenever the simulated QTNs were in high LD or pleiotropic. Collectively, these results suggest that multivariate and univariate GWAS should both be used to infer whether or not causal mutations underlying peak GWAS associations are pleiotropic. Therefore, we recommend that future studies use a combination of multivariate and univariate GWAS models, as both models could be useful for identifying and narrowing down candidate loci with potential pleiotropic effects for downstream biological experiments. 
    more » « less
  3. Abstract Maize inflorescence is a complex phenotype that involves the physical and developmental interplay of multiple traits. Given the evidence that genes could pleiotropically contribute to several of these traits, we used publicly available maize data to assess the ability of multivariate genome-wide association study (GWAS) approaches to identify pleiotropic quantitative trait loci (pQTL). Our analysis of 23 publicly available inflorescence and leaf-related traits in a diversity panel of n = 281 maize lines genotyped with 376,336 markers revealed that the two multivariate GWAS approaches we tested were capable of identifying pQTL in genomic regions coinciding with similar associations found in previous studies. We then conducted a parallel simulation study on the same individuals, where it was shown that multivariate GWAS approaches yielded a higher true-positive quantitative trait nucleotide (QTN) detection rate than comparable univariate approaches for all evaluated simulation settings except for when the correlated simulated traits had a heritability of 0.9. We therefore conclude that the implementation of state-of-the-art multivariate GWAS approaches is a useful tool for dissecting pleiotropy and their more widespread implementation could facilitate the discovery of genes and other biological mechanisms underlying maize inflorescence. 
    more » « less
  4. Abstract Background The Kyoto Encyclopedia of Genes and Genomes (KEGG) provides organized genomic, biomolecular, and metabolic information and knowledge that is reasonably current and highly useful for a wide range of analyses and modeling. KEGG follows the principles of data stewardship to be findable, accessible, interoperable, and reusable (FAIR) by providing RESTful access to their database entries via their web-accessible KEGG API. However, the overall FAIRness of KEGG is often limited by the library and software package support available in a given programming language. While R library support for KEGG is fairly strong, Python library support has been lacking. Moreover, there is no software that provides extensive command line level support for KEGG access and utilization. Results We present kegg_pull, a package implemented in the Python programming language that provides better KEGG access and utilization functionality than previous libraries and software packages. Not only does kegg_pull include an application programming interface (API) for Python programming, it also provides a command line interface (CLI) that enables utilization of KEGG for a wide range of shell scripting and data analysis pipeline use-cases. As kegg_pull’s name implies, both the API and CLI provide versatile options for pulling (downloading and saving) an arbitrary (user defined) number of database entries from the KEGG API. Moreover, this functionality is implemented to efficiently utilize multiple central processing unit cores as demonstrated in several performance tests. Many options are provided to optimize fault-tolerant performance across a single or multiple processes, with recommendations provided based on extensive testing and practical network considerations. Conclusions The new kegg_pull package enables new flexible KEGG retrieval use cases not available in previous software packages. The most notable new feature that kegg_pull provides is its ability to robustly pull an arbitrary number of KEGG entries with a single API method or CLI command, including pulling an entire KEGG database. We provide recommendations to users for the most effective use of kegg_pull according to their network and computational circumstances. 
    more » « less
  5. Abstract Motivation

    Differential network analysis is an important way to understand network rewiring involved in disease progression and development. Building differential networks from multiple ‘omics data provides insight into the holistic differences of the interactive system under different patient-specific groups. DINGO was developed to infer group-specific dependencies and build differential networks. However, DINGO and other existing tools are limited to analyze data arising from a single platform, and modeling each of the multiple ‘omics data independently does not account for the hierarchical structure of the data.

    Results

    We developed the iDINGO R package to estimate group-specific dependencies and make inferences on the integrative differential networks, considering the biological hierarchy among the platforms. A Shiny application has also been developed to facilitate easier analysis and visualization of results, including integrative differential networks and hub gene identification across platforms.

    Availability and implementation

    R package is available on CRAN (https://cran.r-project.org/web/packages/iDINGO) and Shiny application at https://github.com/MinJinHa/iDINGO.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less