skip to main content

This content will become publicly available on August 14, 2022

Title: Scalable Hierarchical Agglomerative Clustering
The applicability of agglomerative clustering, for inferring both hierarchical and flat clustering, is limited by its scalability. Existing scalable hierarchical clustering methods sacrifice quality for speed and often lead to over-merging of clusters. In this paper, we present a scalable, agglomerative method for hierarchical clustering that does not sacrifice quality and scales to billions of data points. We perform a detailed theoretical analysis, showing that under mild separability conditions our algorithm can not only recover the optimal flat partition but also provide a two-approximation to non-parametric DP-Means objective. This introduces a novel application of hierarchical clustering as an approximation algorithm for the non-parametric clustering objective. We additionally relate our algorithm to the classic hierarchical agglomerative clustering method. We perform extensive empirical experiments in both hierarchical and flat clustering settings and show that our proposed approach achieves state-of-the-art results on publicly available clustering benchmarks. Finally, we demonstrate our method's scalability by applying it to a dataset of 30 billion queries. Human evaluation of the discovered clusters show that our method finds better quality of clusters than the current state-of-the-art.
; ; ; ; ; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
KDD '21: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining
Page Range or eLocation-ID:
1245 to 1255
Sponsoring Org:
National Science Foundation
More Like this
  1. Hierarchical clusterings compactly encode multiple granularities of clusters within a tree structure. Hierarchies, by definition, fail to capture different flat partitions that are not subsumed in one another. In this paper, we advocate for an alternative structure for representing multiple clusterings, a directed acyclic graph (DAG). By allowing nodes to have multiple parents, DAG structures are not only more flexible than trees, but also allow for points to be members of multiple clusters. We describe a scalable algorithm, Llama, which simply merges nearest neighbor substructures to form a DAG structure. Llama discovers structures that are more accurate than state-of-the-art tree-basedmore »techniques while remaining scalable to large-scale clustering benchmarks. Additionally, we support the proposed algorithm with theoretical guarantees on separated data, including types of data that cannot be correctly clustered by tree-based algorithms.« less
  2. Hierarchical clustering is a fundamental tool in data mining, machine learning and statistics. Popular hierarchical clustering algorithms include top-down divisive approaches such as bisecting k-means, k-median, and k-center and bottom-up agglomerative approaches such as single- linkage, average-linkage, and centroid-linkage. Unfortunately, only a few scalable hierarchical clustering algorithms are known, mostly based on the single-linkage algorithm. So, as datasets increase in size every day, there is a pressing need to scale other popular methods. We introduce efficient distributed algorithms for bisecting k-means, k- median, and k-center as well as centroid-linkage. In particular, we first formalize a notion of closeness for amore »hierarchical clustering algorithm, and then we use this notion to design new scalable distributed methods with strong worst case bounds on the running time and the quality of the solutions. Finally, we show experimentally that the introduced algorithms are efficient and close to their sequential variants in practice.« less
  3. The Internet-of-Things, complex sensor networks, multi-agent cyber-physical systems are all examples of spatially distributed systems that continuously evolve in time. Such systems generate huge amounts of spatio-temporal data, and system designers are often interested in analyzing and discovering structure within the data. There has been considerable interest in learning causal and logical properties of temporal data using logics such as Signal Temporal Logic (STL); however, there is limited work on discovering such relations on spatio-temporal data. We propose the first set of algorithms for unsupervised learning for spatio-temporal data. Our method does automatic feature extraction from the spatio-temporal data bymore »projecting it onto the parameter space of a parametric spatio-temporal reach and escape logic (PSTREL). We propose an agglomerative hierarchical clustering technique that guarantees that each cluster satisfies a distinct STREL formula. We show that our method generates STREL formulas of bounded description complexity using a novel decision-tree approach which generalizes previous unsupervised learning techniques for Signal Temporal Logic. We demonstrate the effectiveness of our approach on case studies from diverse domains such as urban transportation, epidemiology, green infrastructure, and air quality monitoring.« less
  4. Floating-point types are notorious for their intricate representation. The effective use of mixed precision, i.e., using various precisions in different computations, is critical to achieve a good balance between accuracy and performance. Unfortunately, reasoning about mixed precision is difficult even for numerical experts. Techniques have been proposed to systematically search over floating-point variables and/or program instructions to find a faster, mixed-precision version of a given program. These techniques, however, are characterized by their black box nature, and face scalability limitations due to the large search space. In this paper, we exploit the community structure of floating-point variables to devise amore »scalable hierarchical search for precision tuning. Specifically, we perform dependence analysis and edge profiling to create a weighted dependence graph that presents a network of floating-point variables. We then formulate hierarchy construction on the network as a community detection problem, and present a hierarchical search algorithm that iteratively lowers precision with regard to communities. We implement our algorithm in the tool HiFPTuner, and show that it exhibits higher search efficiency over the state of the art for 75.9% of the experiments taking 59.6% less search time on average. Moreover, HiFPTuner finds more profitable configurations for 51.7% of the experiments, with one known to be as good as the global optimum found through exhaustive search.« less
  5. LOVE, a robust, scalable latent model-based clustering method for biological discovery, can be used across a range of datasets to generate both overlapping and non-overlapping clusters. In our formulation, a cluster comprises variables associated with the same latent factor and is determined from an allocation matrix that indexes our latent model. We prove that the allocation matrix and corresponding clusters are uniquely defined. We apply LOVE to biological datasets (gene expression, serological responses measured from HIV controllers and chronic progressors, vaccine-induced humoral immune responses) resulting in meaningful biological output. For all three datasets, the clusters generated by LOVE remain stablemore »across tuning parameters. Finally, we compared LOVE's performance to that of 13 state-of-the-art methods using previously established benchmarks and found that LOVE outperformed these methods across datasets. Our results demonstrate that LOVE can be broadly used across large-scale biological datasets to generate accurate and meaningful overlapping and non-overlapping clusters.« less