skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Integration of biplanar X-ray, three-dimensional animation and particle simulation reveals details of human ‘track ontogeny’
The emergence of bipedalism had profound effects on human evolutionary history, but the evolution of locomotor patterns within the hominin clade remains poorly understood. Fossil tracks record in vivo behaviours of extinct hominins, and they offer great potential to reveal locomotor patterns at various times and places across the human fossil record. However, there is no consensus on how to interpret anatomical or biomechanical patterns from tracks due to limited knowledge of the complex foot–substrate interactions through which they are produced. Here, we implement engineering-based methods to understand human track formation with the ultimate goal of unlocking invaluable information on hominin locomotion from fossil tracks. We first developed biplanar X-ray and three-dimensional animation techniques that permit visualization of subsurface foot motion as tracks are produced, and that allow for direct comparisons of foot kinematics to final track morphology. We then applied the discrete element method to accurately simulate the process of human track formation, allowing for direct study of human track ontogeny. This window lets us observe how specific anatomical and/or kinematic variables shape human track morphology, and it offers a new avenue for robust hypothesis testing in order to infer patterns of foot anatomy and motion from fossil hominin tracks.  more » « less
Award ID(s):
1825403
PAR ID:
10290642
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Interface Focus
Volume:
11
Issue:
5
ISSN:
2042-8901
Page Range / eLocation ID:
20200075
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Fossil footprints (i.e., tracks) were believed to document arch anatomical evolution, although our recent work has shown that track arches record foot kinematics instead. Analyses of track arches can thereby inform the evolution of human locomotion, although quantifying this 3‐D aspect of track morphology is difficult. Here, we present a volumetric method for measuring the arches of 3‐D models of human tracks and feet, using both Autodesk Maya and Blender software. The method involves generation of a 3‐D object that represents the space beneath the longitudinal arch, and measurement of that arch object's geometry and spatial orientation. We provide relevant tools and guidance for users to apply this technique to their own data. We present three case studies to demonstrate potential applications. These include, (1) measuring the arches of static and dynamic human feet, (2) comparing the arches of human tracks with the arches of the feet that made them, and (3) direct comparisons of human track and foot arch morphology throughout simulated track formation. The volumetric measurement tool proved robust for measuring 3‐D models of human tracks and feet, in static and dynamic contexts. This tool enables researchers to quantitatively compare arches of fossil hominin tracks, in order to derive biomechanical interpretations from them, and/or offers a different approach for quantifying foot morphology in living humans. 
    more » « less
  2. The ‘sprawling-parasagittal’ transition was a major postural shift in the ancestors of mammals, resulting in musculoskeletal reorganization of the forelimbs that underpins modern mammal locomotor diversity. However, ‘when’ and ‘how’ this important postural shift occurred is unknown. While the anatomical changes characterizing this transition can be traced through the fossil record, how these relate to functional changes, and the acquisition of parasagittal posture, remains poorly understood. We produced three-dimensional musculoskeletal models of the forelimbs of extant (n=3) and fossil (n=8) taxa that phylogenetically and functionally span the sprawling–parasagittal transition. We calculated joint range of motion (ROM) to determine a 3D pose-space, using the novel APSE algorithm (Accelerated Pose Searching with Electrostatics). We then estimated muscle moment arms (MMAs) across the entire pose space for all muscles crossing the shoulder and elbow joints. Models of extant species were validated against empirical measures of ROM and MMA derived from ex vivo XROMM (X-ray reconstruction of moving morphology). Among extant species, in both models and experiments, our parasagittal taxon occupied a distinct region of pose-space, with more retracted and depressed shoulder joint angles. MMA data show increased emphasis on shoulder elevation associated with a parasagittal posture, but greater shoulder depression in sprawlers. We hypothesised the fossil taxa would follow trends in these postural variables – e.g., increasing shoulder retraction and elevation MMAs through time – but they instead showed complex, non-linear patterns of forelimb transformation. We demonstrate that the ‘sprawling-parasagittal’ transition is characterized by considerable homoplasy and continuous postural variation throughout mammalian evolution. 
    more » « less
  3. Abstract Despite more than half a century of hominin fossil discoveries in eastern Africa, the regional environmental context of hominin evolution and dispersal is not well established due to the lack of continuous palaeoenvironmental records from one of the proven habitats of early human populations, particularly for the Pleistocene epoch. Here we present a 620,000-year environmental record from Chew Bahir, southern Ethiopia, which is proximal to key fossil sites. Our record documents the potential influence of different episodes of climatic variability on hominin biological and cultural transformation. The appearance of high anatomical diversity in hominin groups coincides with long-lasting and relatively stable humid conditions from ~620,000 to 275,000 yearsbp(episodes 1–6), interrupted by several abrupt and extreme hydroclimate perturbations. A pattern of pronounced climatic cyclicity transformed habitats during episodes 7–9 (~275,000–60,000 yearsbp), a crucial phase encompassing the gradual transition from Acheulean to Middle Stone Age technologies, the emergence ofHomo sapiensin eastern Africa and key human social and cultural innovations. Those accumulative innovations plus the alignment of humid pulses between northeastern Africa and the eastern Mediterranean during high-frequency climate oscillations of episodes 10–12 (~60,000–10,000 yearsbp) could have facilitated the global dispersal ofH. sapiens. 
    more » « less
  4. Dietary shifts and corresponding morphological changes can sometimes evolve in succession, not concurrently—an evolutionary process called behavioral drive. Detecting behavioral drive in the fossil record is challenging because it is difficult to measure behaviors independently from corresponding morphologies. To solve this problem, we focused on a puzzling behavior in the fossil record of some primates: eating graminoid plants. We report carbon and oxygen isotope ratios from fossil cercopithecid monkeys and integrate the data into a view of hominin dietary evolution, finding that changes in graminivorous behavior preceded corresponding changes in dental morphology by ~700,000 years. Decoupling diets and morphologies in time was conducive to determining when and to exploring why dietary changes helped to propel human evolution. 
    more » « less
  5. The ‘sprawling–parasagittal’ transition was a major postural shift that occurred in the ancestors of mammals, [PSE1] underpinned by musculoskeletal reorganization of the limbs. However, ‘when’ and ‘how’ this important postural shift occurred is unknown. While the anatomical changes characterizing this transition can be traced through the fossil record, how these relate to functional changes, and the acquisition of parasagittal posture, remains poorly understood. Here, we produced three-dimensional musculoskeletal models of the forelimbs of extant (n=3) and fossil (n=8) taxa that phylogenetically and functionally span the sprawling–parasagittal transition. We calculated joint range of motion (ROM) to determine a 3D pose space, using the novel APSE algorithm (Accelerated Pose Searching with Electrostatics). We then estimated muscle moment arms (MMAs) across the entire pose space for all muscles crossing the shoulder and elbow joints. Models of extant species were validated against empirical measures of ROM and MMA derived from ex vivo XROMM (X-ray reconstruction of moving morphology). Among extant species, our parasagittal taxon occupied a distinct region of pose-space, with more retracted and depressed shoulder joint angles. MMA data show increased emphasis on shoulder elevation associated with a parasagittal posture, but greater shoulder depression in sprawlers. Results from the fossil species show complex, non-linear patterns of forelimb transformation, demonstrating that the ‘sprawling-parasagittal’ transition is characterized by homoplasy and postural variation within the mammalian lineage. 
    more » « less