Abstract In this work, we demonstrate that damage mechanism identification from acoustic emission (AE) signals generated in minicomposites with elastically similar constituents is possible. AE waveforms were generated by SiC/SiC ceramic matrix minicomposites (CMCs) loaded under uniaxial tension and recorded by four sensors (two models with each model placed at two ends). Signals were encoded with a modified partial power scheme and subsequently partitioned through spectral clustering. Matrix cracking and fiber failure were identified based on the frequency information contained in the AE event they produced, despite the similar constituent elastic properties of the matrix and fiber. Importantly, the resultant identification of AE events closely followed CMC damage chronology, wherein early matrix cracking is later followed by fiber breaks, even though the approach is fully domain-knowledge agnostic. Additionally, the partitions were highly precise across both the model and location of the sensors, and the partitioning was repeatable. The presented approach is promising for CMCs and other composite systems with elastically similar constituents.
more »
« less
Interpreting Acoustic Energy Emission in SiC/SiC Minicomposites through Modeling of Fracture Surface Areas.
The relationship between acoustic emission (AE) and damage source areas in SiC/SiC minicomposites was modeled using insights from tensile testing in-scanning electron microscope (SEM). Damage up to matrix crack saturation was bounded by: (1) AE generated by matrix cracking (lower bound) and (2) AE generated by matrix cracking, and fiber debonding and sliding in crack wakes (upper bound). While fiber debonding and sliding exhibit lower strain energy release rates than matrix cracking and fiber breakage, they contribute significant damage area and likely produce AE. Fiber breaks beyond matrix crack saturation were modeled by two conditions: (i) only fiber breaks generated AE; and (ii) fiber breaks occurred simultaneously with fiber sliding to generate AE. While fiber breaks are considered the dominant late-stage mechanism, our modeling indicates that other mechanisms are active, a finding that is supported by experimental in-SEM observations of matrix cracking in conjunction with fiber failure at rupture.
more »
« less
- Award ID(s):
- 1934641
- PAR ID:
- 10290848
- Date Published:
- Journal Name:
- Journal of the European Ceramic Society
- Volume:
- 41
- Issue:
- 14
- ISSN:
- 1873-619X
- Page Range / eLocation ID:
- 6883-6893
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Routine high strain rate impacts from the surrounding environment can cause surface erosion, abrasion, and even catastrophic failure to many structural materials. It is thus highly desirable to develop lightweight, thin, and tough impact resistant coatings. Here, inspired by the structurally robust impact surface of the dactyl club of the peacock mantis shrimp, a silicon carbide and chitosan nanocomposite coating is developed to evaluate its impact resistance as a function of particle loading. High strain rate impact tests demonstrate that coatings with 50% and 60% SiC have optimal performance with the greatest reduction in penetration depth and damage area to the substrate. Post‐impact analysis confirms that these concentrations achieve a balance between stiffness and matrix phase continuity, efficiently dissipating impact energy while maintaining coating integrity. The addition of SiC particles helps dissipate impact energy via interphase effects, particle percolation, and frictional losses due to particle jamming. The formation of these stress paths is also modeled to better understand how the addition of particles improves coating stiffness and the stress distribution as a function of particle loading. These findings highlight the potential of bioinspired materials and their promise to promote innovation and breakthroughs in the development of resilient multifunctional materials.more » « less
-
In modern practice, precast segmental tunnel linings are typically installed via a tunnel boring machine (TBM), which advances by thrusting against the previously installed segmental ring. The forces applied through the thrust jack pads can induce significant bursting and spalling tensile stresses and strains in the segment, and improperly designed segments can suffer from cracking as a result. An experimental study has been conducted to evaluate the progression of damage from initial cracking to ultimate capacity for full-scale precast tunnel liner segments under thrust jack loading. The baseline segment design is composed of steel fiber reinforced concrete (SFRC), and the impact of supplemental conventional steel bar reinforcement and load application eccentricity were also investigated. Six full-scale tests were performed with a thrust jack load per pad up to 22.2 MN (which is ~3.8 times the maximum expected installation thrust force). At the maximum expected thrust jack load during installation (5.78 MN per pad), the segments were virtually undamaged, and hairline cracking initiated between the load pads on only one test. At the TBM’s ultimate jacking capacity (9.55 MN per pad) surface cracking was observed between and under the load pads; however, the crack width remained below 0.2 mm for all specimens. The formation of cracking limit states was accurately predicted by pre-test linear and nonlinear finite element (FE) models. At overload conditions, the baseline SFRC-only segment exhibited a radial bursting failure. The inclusion of supplemental conventional reinforcement does not reduce the level of cracking damage or strain development below the TBM’s ultimate jacking capacity; however, at overload conditions, the supplemental reinforcement mitigates cracking and prevents a radial bursting failure at 20.3 MN per pad. A load eccentricity of 38 mm towards the extrados surface increased the transverse strain and the formation of transverse cracking at a lower load level.more » « less
-
Van Mullem, T.; De Belie, N.; Ferrara, L.; Gruyaert, E.; Van Tittelboom, K. (Ed.)The goal of this research is to develop innovative damage-responsive bacterial-based self-healing fibers (hereafter called BioFiber) that can be incorporated into concrete to enable two functionalities simultaneously: (1) crack bridging functionality to control crack growth and (2) crack healing functionality when a crack occurs. The BioFiber is comprised of a load-bearing core fiber, a sheath of bacteria-laden hydrogel, and an outer impermeable strain-responsive shell coating. An instant soaking manufacturing process was used with multiple reservoirs containing bacteria-laden, hydrophilic prepolymer and crosslinking reagents to develop BioFiber. Sodium-alginate was used as a prepolymer to produce calcium-alginate hydrogel via ionic crosslinking on the core fiber. The dormant bacteria (spore) ofLysinibacillus sphaericuswas incorporated in hydrogel as a self-healing agent. Then, an impermeable polymeric coating was applied to the hydrogel-coated core fibers. The impermeable strain-responsive shell coating material was manufactured using the polymer blend of polystyrene and polylactic acid. The high swelling capacity of calcium-alginate provides the water required for the microbially induced calcium carbonate precipitation (MICP) chemical pathway, i.e., ureolysis in this study. The strain-responsive impermeable coating provides adequate flexibility during concrete casting to protect the spores and alginate before cracking and sufficient stress-strain behavior to grant damage-responsiveness upon crack occurrence to activate MICP. To evaluate the behavior of developed BioFiber, the swelling capacity of the hydrogel, the impermeability of shell coating, the spore casting survivability, and MICP activities were investigated.more » « less
-
Residual stress reduction during composite manufacturing through cure modification: In situ analysisResidual stresses are detrimental to composite structures as they induce processing defects like debonding, delamination, and matrix cracking which significantly decrease their load-bearing capability. In this research, a new in-situ approach using digital image correlation is utilized to analyze the effect of the cure cycle modification on residual stress evolution during processing. It was found that the modified cure cycle comprising abrupt cooling after gelation reduces the residual stresses. Five different layup configurations are investigated to examine the effect of fiber direction. A maximum average residual stress reduction of 31.8% is observed for the balanced unsymmetric [30/-30/60/-60] laminate. The residual stress reduction results in an increase in failure strength between 4 and 12% in the different layups and can lead up to a 22% increase in first-ply failure strength.more » « less
An official website of the United States government

