skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 17 until 8:00 AM ET on Saturday, May 18 due to maintenance. We apologize for the inconvenience.


Title: A Massive, Dusty, Hi Absorption–Selected Galaxy at z ≈ 2.46 Identified in a CO Emission Survey
Abstract

We report a NOrthern Extended Millimeter Array (NOEMA) and Atacama Large Millimeter/submillimeter Array search for redshifted CO emission from the galaxies associated with seven high-metallicity ([M/H] ≥ −1.03) damped Lyαabsorbers (DLAs) atz≈ 1.64–2.51. Our observations yielded one new detection of CO(3–2) emission from a galaxy atz= 2.4604 using NOEMA, associated with thez= 2.4628 DLA toward QSO B0201+365. Including previous searches, our search results in detection rates of CO emission of5624+38% and119+26%, respectively, in the fields of DLAs with [M/H] > −0.3 and [M/H] < −0.3. Further, the Hi–selected galaxies associated with five DLAs with [M/H] > −0.3 all have high molecular gas masses, ≳5 × 1010M. This indicates that the highest-metallicity DLAs atz≈ 2 are associated with the most massive galaxies. The newly identifiedz≈ 2.4604 Hi–selected galaxy, DLA0201+365g, has an impact parameter of ≈7 kpc to the QSO sightline, and an implied molecular gas mass of (5.04 ± 0.78) × 1010× (αCO/4.36) × (r31/0.55)M. Archival Hubble Space Telescope Wide Field and Planetary Camera 2 imaging covering the rest-frame near-ultraviolet (NUV) and far-ultraviolet (FUV) emission from this galaxy yield nondetections of rest-frame NUV and FUV emission, and a 5σupper limit of 2.3Myr−1on the unobscured star formation rate (SFR). The low NUV-based SFR estimate, despite the very high molecular gas mass, indicates that DLA0201+365g either is a very dusty galaxy, or has a molecular gas depletion time that is around 2 orders of magnitude larger than that of star-forming galaxies at similar redshifts.

 
more » « less
Award ID(s):
2107989 2107990 2107991
NSF-PAR ID:
10374946
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
934
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 87
Size(s):
["Article No. 87"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The bimodal absorption system imaging campaign (BASIC) aims to characterize the galaxy environments of a sample of 36 Hi-selected partial Lyman limit systems (pLLSs) and Lyman limit systems (LLSs) in 23 QSO fields atz≲ 1. These pLLSs/LLSs provide a unique sample of absorbers with unbiased and well-constrained metallicities, allowing us to explore the origins of metal-rich and low-metallicity circumgalactic medium (CGM) atz< 1. Here we present Keck/KCWI and Very Large Telescope/MUSE observations of 11 of these QSO fields (19 pLLSs) that we combine with Hubble Space Telescope/Advanced Camera for Surveys imaging to identify and characterize the absorber-associated galaxies at 0.16 ≲z≲ 0.84. We find 23 unique absorber-associated galaxies, with an average of one associated galaxy per absorber. For seven absorbers, all with <10% solar metallicities, we find no associated galaxies withlogM9.0withinρ/Rvirand ∣Δv∣/vesc≤ 1.5 with respect to the absorber. We do not find any strong correlations between the metallicities or Hicolumn densities of the gas and most of the galaxy properties, except for the stellar mass of the galaxies: the low-metallicity ([X/H] ≤ −1.4) systems have a probability of0.390.15+0.16for having a host galaxy withlogM9.0withinρ/Rvir≤ 1.5, while the higher metallicity absorbers have a probability of0.780.13+0.10. This implies metal-enriched pLLSs/LLSs atz< 1 are typically associated with the CGM of galaxies withlogM>9.0, whereas low-metallicity pLLSs/LLSs are found in more diverse locations, with one population arising in the CGM of galaxies and another more broadly distributed in overdense regions of the universe. Using absorbers not associated with galaxies, we estimate the unweighted geometric mean metallicity of the intergalactic medium to be [X/H] ≲ −2.1 atz< 1, which is lower than previously estimated.

     
    more » « less
  2. Abstract

    We present a detection of 21 cm emission from large-scale structure (LSS) between redshift 0.78 and 1.43 made with the Canadian Hydrogen Intensity Mapping Experiment. Radio observations acquired over 102 nights are used to construct maps that are foreground filtered and stacked on the angular and spectral locations of luminous red galaxies (LRGs), emission-line galaxies (ELGs), and quasars (QSOs) from the eBOSS clustering catalogs. We find decisive evidence for a detection when stacking on all three tracers of LSS, with the logarithm of the Bayes factor equal to 18.9 (LRG), 10.8 (ELG), and 56.3 (QSO). An alternative frequentist interpretation, based on the likelihood ratio test, yields a detection significance of 7.1σ(LRG), 5.7σ(ELG), and 11.1σ(QSO). These are the first 21 cm intensity mapping measurements made with an interferometer. We constrain the effective clustering amplitude of neutral hydrogen (Hi), defined asHI103ΩHIbHI+fμ2, where ΩHiis the cosmic abundance of Hi,bHiis the linear bias of Hi, and 〈fμ2〉 = 0.552 encodes the effect of redshift-space distortions at linear order. We findHI=1.510.97+3.60for LRGs (z= 0.84),HI=6.763.79+9.04for ELGs (z= 0.96), andHI=1.680.67+1.10for QSOs (z= 1.20), with constraints limited by modeling uncertainties at nonlinear scales. We are also sensitive to bias in the spectroscopic redshifts of each tracer, and we find a nonzero bias Δv= − 66 ± 20 km s−1for the QSOs. We split the QSO catalog into three redshift bins and have a decisive detection in each, with the upper bin atz= 1.30 producing the highest-redshift 21 cm intensity mapping measurement thus far.

     
    more » « less
  3. Abstract

    We present a search for extremely red, dust-obscured,z> 7 galaxies with JWST/NIRCam+MIRI imaging over the first 20 arcmin2of publicly available Cycle 1 data from the COSMOS-Web, CEERS, and PRIMER surveys. Based on their red color in F277W−F444W (∼2.5 mag) and detection in MIRI/F770W (∼25 mag), we identify two galaxies, COS-z8M1 and CEERS-z7M1, that have best-fit photometric redshifts ofz=8.40.4+0.3and7.60.1+0.1, respectively. We perform spectral energy distribution fitting with a variety of codes (includingbagpipes,prospector,beagle, andcigale) and find a >95% probability that these indeed lie atz> 7. Both sources are compact (Reff≲ 200 pc) and highly obscured (AV∼ 1.5–2.5) and, at our best-fit redshift estimates, likely have strong [Oiii]+Hβemission contributing to their 4.4μm photometry. We estimate stellar masses of ∼1010Mfor both sources; by virtue of detection in MIRI at 7.7μm, these measurements are robust to the inclusion of bright emission lines, for example, from an active galactic nucleus. We identify a marginal (2.9σ) Atacama Large Millimeter/submillimeter Array detection at 2 mm within 0.″5 of COS-z8M1, which, if real, would suggest a remarkably high IR luminosity of ∼1012L. These two galaxies, if confirmed atz∼ 8, would be extreme in their stellar and dust masses and may be representative of a substantial population of highly dust-obscured galaxies at cosmic dawn.

     
    more » « less
  4. Abstract

    We use medium- and high-resolution spectroscopy of close pairs of quasars to analyze the circumgalactic medium (CGM) surrounding 32 damped Lyαabsorption systems (DLAs). The primary quasar sightline in each pair probes an intervening DLA in the redshift range 1.6 <zabs< 3.5, such that the secondary sightline probes absorption from Lyαand a large suite of metal-line transitions (including Oi, Cii, Civ, Siii, and Siiv) in the DLA host galaxy’s CGM at transverse distances 24 kpc ≤R≤ 284 kpc. Analysis of Lyαin the CGM sightlines shows an anticorrelation betweenRand Hicolumn density (NHI) with 99.8% confidence, similar to that observed around luminous galaxies. The incidences of Ciiand SiiiwithN> 1013cm−2within 100 kpc of DLAs are larger by 2σthan those measured in the CGM of Lyman break galaxies (Cf(NCII) > 0.89 andCf(NSiII)=0.750.17+0.12). Metallicity constraints derived from ionic ratios for nine CGM systems with negligible ionization corrections andNHI> 1018.5cm−2show a significant degree of scatter (with metallicities/limits across the range2.06logZ/Z0.75), suggesting inhomogeneity in the metal distribution in these environments. Velocity widths of Civλ1548 and low-ionization metal species in the DLA versus CGM sightlines are strongly (>2σ) correlated, suggesting that they trace the potential well of the host halo overR≲ 300 kpc scales. At the same time, velocity centroids for Civλ1548 differ in DLA versus CGM sightlines by >100 km s−1for ∼50% of velocity components, but few components have velocities that would exceed the escape velocity assuming dark matter host halos of ≥1012M.

     
    more » « less
  5. Abstract

    We present JWST and Atacama Large Millimeter/submillimeter Array (ALMA) imaging for the lensing system SPT0418−47, which includes a strongly lensed, dusty, star-forming galaxy at redshiftz= 4.225 and an associated multiply imaged companion. The JWST NIRCam and MIRI imaging observations presented in this paper were acquired as part of the Early Release Science program Targeting Extremely Magnified Panchromatic Lensed Arcs and Their Extended Star formation (TEMPLATES). This data set provides robust mutiwavelength detections of stellar light in both the main (SPT0418A) and companion (SPT0418B) galaxies, while the ALMA detection of [Cii] emission confirms that SPT0418B lies at the same redshift as SPT0418A. We infer that the projected physical separation of the two galaxies is 4.42 ± 0.05 kpc. We derive total magnifications ofμ= 29 ± 1 andμ= 4.1 ± 0.7 for SPT0418A and SPT0418B, respectively. We use bothprospectorandcigaleto derive stellar masses. We find that SPT0418A has a stellar mass ofM*=3.40.6+1.1×1010Mfromprospector orM*= 1.5 ± 0.3 × 1010Mfromcigale. The stellar mass ratio of SPT0418A and SPT0418B is roughly between 4 and 7 (4.21.6+1.9forprospectorand 7.5 ± 3.7 forcigale). We see evidence of extended structure associated with SPT0418A that is suggestive of a tidal feature. These features, along with the close projected proximity, imply that the system is interacting. Interestingly, the star formation rates and stellar masses of both galaxies are consistent with the main sequence of star-forming galaxies at this epoch, indicating that this ongoing interaction has not noticeably elevated the star formation levels.

     
    more » « less