skip to main content

Title: A Massive, Dusty, Hi Absorption–Selected Galaxy at z ≈ 2.46 Identified in a CO Emission Survey
Abstract

We report a NOrthern Extended Millimeter Array (NOEMA) and Atacama Large Millimeter/submillimeter Array search for redshifted CO emission from the galaxies associated with seven high-metallicity ([M/H] ≥ −1.03) damped Lyαabsorbers (DLAs) atz≈ 1.64–2.51. Our observations yielded one new detection of CO(3–2) emission from a galaxy atz= 2.4604 using NOEMA, associated with thez= 2.4628 DLA toward QSO B0201+365. Including previous searches, our search results in detection rates of CO emission of5624+38% and119+26%, respectively, in the fields of DLAs with [M/H] > −0.3 and [M/H] < −0.3. Further, the Hi–selected galaxies associated with five DLAs with [M/H] > −0.3 all have high molecular gas masses, ≳5 × 1010M. This indicates that the highest-metallicity DLAs atz≈ 2 are associated with the most massive galaxies. The newly identifiedz≈ 2.4604 Hi–selected galaxy, DLA0201+365g, has an impact parameter of ≈7 kpc to the QSO sightline, and an implied molecular gas mass of (5.04 ± 0.78) × 1010× (αCO/4.36) × (r31/0.55)M. Archival Hubble Space Telescope Wide Field and Planetary Camera 2 imaging covering the rest-frame near-ultraviolet (NUV) and far-ultraviolet (FUV) emission from this galaxy yield nondetections of rest-frame NUV and FUV emission, and a 5σupper limit of 2.3Myr−1on the unobscured more » star formation rate (SFR). The low NUV-based SFR estimate, despite the very high molecular gas mass, indicates that DLA0201+365g either is a very dusty galaxy, or has a molecular gas depletion time that is around 2 orders of magnitude larger than that of star-forming galaxies at similar redshifts.

« less
Authors:
; ; ; ; ; ;
Award ID(s):
2107989 2107990 2107991
Publication Date:
NSF-PAR ID:
10374946
Journal Name:
The Astrophysical Journal
Volume:
934
Issue:
1
Page Range or eLocation-ID:
Article No. 87
ISSN:
0004-637X
Publisher:
DOI PREFIX: 10.3847
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The bimodal absorption system imaging campaign (BASIC) aims to characterize the galaxy environments of a sample of 36 Hi-selected partial Lyman limit systems (pLLSs) and Lyman limit systems (LLSs) in 23 QSO fields atz≲ 1. These pLLSs/LLSs provide a unique sample of absorbers with unbiased and well-constrained metallicities, allowing us to explore the origins of metal-rich and low-metallicity circumgalactic medium (CGM) atz< 1. Here we present Keck/KCWI and Very Large Telescope/MUSE observations of 11 of these QSO fields (19 pLLSs) that we combine with Hubble Space Telescope/Advanced Camera for Surveys imaging to identify and characterize the absorber-associated galaxies at 0.16 ≲z≲ 0.84. We find 23 unique absorber-associated galaxies, with an average of one associated galaxy per absorber. For seven absorbers, all with <10% solar metallicities, we find no associated galaxies withlogM9.0withinρ/Rvirand ∣Δv∣/vesc≤ 1.5 with respect to the absorber. We do not find any strong correlations between the metallicities or Hicolumn densities of the gas and most of the galaxy properties, except for the stellar mass of the galaxies: the low-metallicity ([X/H] ≤ −1.4) systems have a probability of0.390.15+0.16for having a host galaxy withlogM9.0withinρ/Rvir≤ 1.5, while the higher metallicity absorbers havemore »a probability of0.780.13+0.10. This implies metal-enriched pLLSs/LLSs atz< 1 are typically associated with the CGM of galaxies withlogM>9.0, whereas low-metallicity pLLSs/LLSs are found in more diverse locations, with one population arising in the CGM of galaxies and another more broadly distributed in overdense regions of the universe. Using absorbers not associated with galaxies, we estimate the unweighted geometric mean metallicity of the intergalactic medium to be [X/H] ≲ −2.1 atz< 1, which is lower than previously estimated.

    « less
  2. Abstract

    We report CO(5 → 4) and CO(6 → 5) line observations in the dusty starbursting galaxy CRLE (z= 5.667) and the main-sequence (MS) galaxy HZ10 (z= 5.654) with the Northern Extended Millimeter Array. CRLE is the most luminousz> 5 starburst in the COSMOS field and HZ10 is the most gas-rich “normal” galaxy currently known atz> 5. We find line luminosities for CO(5 → 4) and CO(6 → 5) of (4.9 ± 0.5) and (3.8 ± 0.4) × 1010K km s−1pc2for CRLE and upper limits of < 0.76 and < 0.60 × 1010K km s−1pc2for HZ10, respectively. The CO excitation of CRLE appears comparable to otherz> 5 dusty star-forming galaxies. For HZ10, these line luminosity limits provide the first significant constraints of this kind for an MS galaxy atz> 5. We find the upper limit ofL54/L21in HZ10 could be similar to the average value for MS galaxies aroundz≈ 1.5, suggesting that MS galaxies with comparable gas excitation may already have existed one billion years after the Big Bang. For CRLE we determine the most likely values for the H2density, kinetic temperature, and dust temperature based on excitation modeling of the CO line ladder. Wemore »also derive a total gas mass of (7.1 ± 1.3) × 1010M. Our findings provide some of the currently most detailed constraints on the gas excitation that sets the conditions for star formation in a galaxy protocluster environment atz> 5.

    « less
  3. Abstract

    We present spatially resolved morphological properties of [CII] 158μm, [OIII] 88μm, dust, and rest-frame ultraviolet (UV) continuum emission for A1689-zD1, a strongly lensed, sub-L* galaxy atz= 7.13, by utilizing deep Atacama Large Millimeter/submillimeter Array (ALMA) and Hubble Space Telescope (HST) observations. While the [OIII] line and UV continuum are compact, the [CII] line is extended up to a radius ofr∼ 12 kpc. Using multi-band rest-frame far-infrared continuum data ranging from 52 to 400μm, we find an average dust temperature and emissivity index ofTdust=4114+17K andβ=1.70.7+1.1, respectively, across the galaxy. We find slight differences in the dust continuum profiles at different wavelengths, which may indicate that the dust temperature decreases with distance. We map the star formation rate (SFR) via IR and UV luminosities and determine a total SFR of 37 ± 1Myr−1with an obscured fraction of 87%. While the [OIII] line is a good tracer of the SFR, the [CII] line shows deviation from the localL[CII]-SFR relations in the outskirts of the galaxy. Finally, we observe a clear difference in the line profile between [CII] and [OIII], with significant residuals (∼5σ) in the [OIII] line spectrum after subtracting a single Gaussian model. This suggestsmore »a possible origin of the extended [CII] structure from the cooling of hot ionized outflows. The extended [CII] and high-velocity [OIII] emission may both contribute in part to the highL[OIII]/L[CII]ratios recently reported inz> 6 galaxies.

    « less
  4. Abstract

    We measure the molecular-to-atomic gas ratio,Rmol, and the star formation rate (SFR) per unit molecular gas mass, SFEmol, in 38 nearby galaxies selected from the Virgo Environment Traced in CO (VERTICO) survey. We stack ALMA12CO (J= 2−1) spectra coherently using Hivelocities from the VIVA survey to detect faint CO emission out to galactocentric radiirgal∼ 1.2r25. We determine the scale lengths for the molecular and stellar components, finding a ∼3:5 relation compared to ∼1:1 in field galaxies, indicating that the CO emission is more centrally concentrated than the stars. We computeRmolas a function of different physical quantities. While the spatially resolvedRmolon average decreases with increasing radius, we find that the mean molecular-to-atomic gas ratio within the stellar effective radiusRe,Rmol(r<Re), shows a systematic increase with the level of Hi, truncation and/or asymmetry (HIperturbation). Analysis of the molecular- and the atomic-to-stellar mass ratios withinRe,Rmol(r<Re)andRatom(r<Re), shows that VERTICO galaxies have increasingly lowerRatom(r<Re)for larger levels of HIperturbation (compared to field galaxies matched in stellar mass), but no significant change inRmol(r<Re). We also measure a clear systematic decrease of the SFEmolwithinRe, SFEmol(r<Re),more »with increasingly perturbed Hi. Therefore, compared to field galaxies from the field, VERTICO galaxies are more compact in CO emission in relation to their stellar distribution, but increasingly perturbed atomic gas increases theirRmoland decreases the efficiency with which their molecular gas forms stars.

    « less
  5. Abstract

    We present a multiwavelength analysis of the galaxy cluster SPT-CL J0607-4448 (SPT0607), which is one of the most distant clusters discovered by the South Pole Telescope atz= 1.4010 ± 0.0028. The high-redshift cluster shows clear signs of being relaxed with well-regulated feedback from the active galactic nucleus (AGN) in the brightest cluster galaxy (BCG). Using Chandra X-ray data, we construct thermodynamic profiles and determine the properties of the intracluster medium. The cool-core nature of the cluster is supported by a centrally peaked density profile and low central entropy (K0=189+11keV cm2), which we estimate assuming an isothermal temperature profile due to the limited spectral information given the distance to the cluster. Using the density profile and gas cooling time inferred from the X-ray data, we find a mass-cooling rateṀcool=10060+90Myr−1. From optical spectroscopy and photometry around the [Oii] emission line, we estimate that the BCG star formation rate isSFR[OII]=1.70.6+1.0Myr−1, roughly two orders of magnitude lower than the predicted mass-cooling rate. In addition, using ATCA radio data at 2.1 GHz, we measure a radio jet powerPcav=3.21.3+2.1×1044erg s−1, which is consistent withmore »the X-ray cooling luminosity (Lcool=1.90.5+0.2×1044erg s−1withinrcool= 43 kpc). These findings suggest that SPT0607 is a relaxed, cool-core cluster with AGN-regulated cooling at an epoch shortly after cluster formation, implying that the balance between cooling and feedback can be reached quickly. We discuss the implications for these findings on the evolution of AGN feedback in galaxy clusters.

    « less