skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Probabilistic Microgrid Energy Management with Interval Predictions
In this paper, we consider a probabilistic microgrid dispatch problem where the predictions of the load and the Renewable Energy Source (RES) generation are given in the form of intervals. A hybrid method combining scenario-selected optimization and reserve strategy using the Model Predictive Control (MPC) framework is proposed. Specifically, first of all, an appropriate scenario is selected by the optimizer at each optimization stage, and then the optimal scheduling and reservation of system capacity are determined based on the selected scenario and possible variations in the future as provided by the predictors. In addition, a new reserve strategy is introduced to adaptively maintain system reliability and respond to variations in the hierarchical microgrid control. Simulations are conducted to compare our proposed method with the existing robust method and the deterministic dispatch with perfect information. Results show that our proposed method significantly improves the system efficiency while maintaining system reliability.  more » « less
Award ID(s):
1923142
PAR ID:
10291036
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Energies
Volume:
13
Issue:
12
ISSN:
1996-1073
Page Range / eLocation ID:
3116
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Stability and reliability are of the most important concern for isolated microgrid systems that have no support from the utility grid. Interval predictions are often applied to ensure the system stability of isolated microgrids as they cover more uncertainties and robust control can be achieved based on more sufficient information. In this paper, we propose a probabilistic microgrid energy exchange method based on the Model Predictive Control (MPC) approach to make better use of the prediction intervals so that the system stability and cost efficiency of isolated microgrids are improved simultaneously. Appropriate scenarios are selected from the predictions according to the evaluation of future trends and system capacity. In the meantime, a two-stage adaptive reserve strategy is adopted to further utilize the potential of interval predictions and maintain the system security adaptively. Reserves are determined at the optimization stage to prepare some extra capacity for the fluctuations in the renewable generation and load demand at the operation stage based on the aggressive and conservative level of the system, which is automatically updated at each step. The optimal dispatch problem is finally formulated using the mixed-integer linear programming model and the MPC is formulated as an optimization problem with a discount factor introduced to adjust the weights. Case studies show that the proposed method could effectively guarantee the stability of the system and improve economic performance. 
    more » « less
  2. Co-design, or integrated physical and control system design, has been demonstrated successfully for several engineering system design optimization applications, primarily in a deterministic manner. An opportunity exists to study non-deterministic co-design strategies, including incorporation of uncertainty-induced failures, into an integrated co-design framework. Reliability-based design optimization (RBDO) is one such method that can be used to increase the likelihood of having a feasible design that satisfies all reliability constraints. While significant recent advancements have been made in co-design and RBDO separately, limited work has been done where reliability-based dynamic system design and control design optimization are considered jointly. In this paper, the co-design problem is integrated with the RBDO framework to yield a system-optimal design and the corresponding control trajectory, which satisfy all reliability constraints in the presence of parameter variations. Different problem formulations and RBDO algorithms are compared through numerical examples. The design of a horizontal-axis wind turbine (HAWT) supported by a lattice tower (with parameter uncertainties) is presented to demonstrate the applicability of the proposed method. 
    more » « less
  3. Economic dispatch in a multi-microgrid (MMG) system involves an increasing number of states from distributed energy resources (DERs) compared to a single microgrid. In these cases, traditional reinforcement learning (RL) approaches may become computationally expensive or less effective in finding the least-cost solution. This paper presents a novel RL approach that employs local learning agents to interact with individual microgrid environments in a distributed manner and a global agent to search for actions to minimize system cost at the MMG system level. The proposed distributed RL framework is more efficient in learning the dispatch policy compared to conventional approaches. Case studies are performed on a 3-microgrid system with different types of DERs. Results substantiate the effectiveness of the proposed approach in comparison with conventional methods in terms of operation costs, computation time, and peak-to-average ratio. 
    more » « less
  4. Existing computer analytic methods for the microgrid system, such as reinforcement learning (RL) methods, suffer from a long-term problem with the empirical assumption of the reward function. To alleviate this limitation, we propose a multi-virtual-agent imitation learning (MAIL) approach to learn the dispatch policy under different power supply interrupted periods. Specifically, we utilize the idea of generative adversarial imitation learning method to do direct policy mapping, instead of learning from manually designed reward functions. Multi-virtual agents are used for exploring the relationship of uncertainties and corresponding actions in different microgrid environments in parallel. With the help of a deep neural network, the proposed MAIL approach can enhance robust ability by minimizing the maximum crossover discriminators to cover more interrupted cases. Case studies show that the proposed MAIL approach can learn the dispatch policies as well as the expert method and outperform other existing RL methods. 
    more » « less
  5. Reliability enhancement of microgrids is challenged by environmental and operational failures. Centrally controlled microgrids are susceptible to failures at high probability due to a single-point-of-failure, e.g. the central controller. True decentralization of microgrid architecture entails elimination of the central controller, attaining a parallel configuration for the system. In this paper, decentralized microgrid control architecture is proposed as a solution for reliability degradation over the time, and analyzes the reliability aspects of centralized and decentralized control architectures for microgrids. Degree of importance of a single controller in centralized and decentralized architectures is determined and validated by Markov Chain Models (MCM). Results confirm that higher reliability is achieved when true decentralization of control architecture is adopted. Challenges of implementing a true decentralized control architecture are discussed. Hardware-In-the-Loop simulation results for microgrid controller failure scenarios for both architectures are presented and discussed. 
    more » « less