skip to main content


Title: Generalizing systematic adaptive cluster sampling for forest ecosystem inventory
Reliable statistical inference is central to forest ecology and management, much of which seeks to estimate population parameters for forest attributes and ecological indicators for biodiversity, functions and services in forest ecosystems. Many populations in nature such as plants or animals are characterized by aggregation of tendencies, introducing a big challenge to sampling. Regardless, a biased or imprecise inference would mislead analysis, hence the conclusion and policymaking. Systematic adaptive cluster sampling (SACS) is designunbiased and particularly efficient for inventorying spatially clustered populations. However, (1) oversampling is common for nonrare variables, making SACS a difficult choice for inventorying common forest attributes or ecological indicators; (2) a SACS sample is not completely specified until the field campaign is completed, making advance budgeting and logistics difficult; (3) even for rare variables, uncertainty regarding the final sample still persists; and (4) a SACS sample may be variable-specific as its formation can be adapted to a particular attribute or indicator, thus risking imbalance or non-representativeness for other jointly observed variables. Consequently, to solve these challenges, we aim to develop a generalized SACS (GSACS) with respect to the design and estimators, and to illustrate its connections with systematic sampling (SS) as has been widely employed by national forest inventories and ecological observation networks around the world. In addition to theoretical derivations, empirical sampling distributions were validated and compared for GSACS and SS using sampling simulations that incorporated a comprehensive set of forest populations exhibiting different spatial patterns. Five conclusions are relevant: (1) in contrast to SACS, GSACS explicitly supports inventorying forest attributes and ecological indicators that are nonrare, and solved SACS problems of oversampling, uncertain sample form, and sample imbalance for alternative attributes or indicators; (2) we demonstrated that SS is a special case of GSACS; (3) even with fewer sample plots, GSACS gives estimates identical to SS; (4) GSACS outperforms SS with respect to inventorying clustered populations and for making domain-specific estimates; and (5) the precision in design-based inference is negatively correlated with the prevalence of a spatial pattern, the range of spatial autocorrelation, and the sample plot size, in a descending order.  more » « less
Award ID(s):
1922758
NSF-PAR ID:
10291041
Author(s) / Creator(s):
Date Published:
Journal Name:
Forest ecology and management
Volume:
489
Issue:
2021
ISSN:
0378-1127
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Network analysis of infectious disease in wildlife can reveal traits or individuals critical to pathogen transmission and help inform disease management strategies. However, estimates of contact between animals are notoriously difficult to acquire. Researchers commonly use telemetry technologies to identify animal associations, but such data may have different sampling intervals and often captures a small subset of the population. The objectives of this study were to outline best practices for telemetry sampling in network studies of infectious disease by determining (a) the consequences of telemetry sampling on our ability to estimate network structure, (b) whether contact networks can be approximated using purely spatial contact definitions and (c) how wildlife spatial configurations may influence telemetry sampling requirements.

    We simulated individual movement trajectories for wildlife populations using a home range‐like movement model, creating full location datasets and corresponding ‘complete’ networks. To mimic telemetry data, we created ‘sample’ networks by subsampling the population (10%–100% of individuals) with a range of sampling intervals (every minute to every 3 days). We varied the definition of contact for sample networks, using either spatiotemporal or spatial overlap, and varied the spatial configuration of populations (random, lattice or clustered). To compare complete and sample networks, we calculated seven network metrics important for disease transmission and assessed mean ranked correlation coefficients and percent error between complete and sample network metrics.

    Telemetry sampling severely reduced our ability to calculate global node‐level network metrics, but had less impact on local and network‐level metrics. Even so, in populations with infrequent associations, high intensity telemetry sampling may still be necessary. Defining contact in terms of spatial overlap generally resulted in overly connected networks, but in some instances, could compensate for otherwise coarse telemetry data.

    By synthesizing movement and disease ecology with computational approaches, we characterized trade‐offs important for using wildlife telemetry data beyond ecological studies of individual movement, and found that careful use of telemetry data has the potential to inform network models. Thus, with informed application of telemetry data, we can make significant advances in leveraging its use for a better understanding and management of wildlife infectious disease.

     
    more » « less
  2. Abstract

    A critical decision in landscape genetic studies is whether to use individuals or populations as the sampling unit. This decision affects the time and cost of sampling and may affect ecological inference. We analyzed 334 Columbia spotted frogs at 8 microsatellite loci across 40 sites in northern Idaho to determine how inferences from landscape genetic analyses would vary with sampling design. At all sites, we compared a proportion available sampling scheme (PASS), in which all samples were used, to resampled datasets of 2–11 individuals. Additionally, we compared a population sampling scheme (PSS) to an individual sampling scheme (ISS) at 18 sites with sufficient sample size. We applied an information theoretic approach with both restricted maximum likelihood and maximum likelihood estimation to evaluate competing landscape resistance hypotheses. We found that PSS supported low‐density forest when restricted maximum likelihood was used, but a combination model of most variables when maximum likelihood was used. We also saw variations when AIC was used compared to BIC. ISS supported this model as well as additional models when testing hypotheses of land cover types that create the greatest resistance to gene flow for Columbia spotted frogs. Increased sampling density and study extent, seen by comparing PSS to PASS, showed a change in model support. As number of individuals increased, model support converged at 7–9 individuals for ISS to PSS. ISS may be useful to increase study extent and sampling density, but may lack power to provide strong support for the correct model with microsatellite datasets. Our results highlight the importance of additional research on sampling design effects on landscape genetics inference.

     
    more » « less
  3. Abstract Aim

    Efforts to predict the responses of soil fungal communities to climate change are hindered by limited information on how fungal niches are distributed across environmental hyperspace. We predict the climate sensitivity of North American soil fungal assemblage composition by modelling the ecological niches of several thousand fungal species.

    Location

    One hundred and thirteen sites in the United States and Canada spanning all biomes except tropical rain forest.

    Major Taxa Studied

    Fungi.

    Time Period

    2011–2018.

    Methods

    We combine internal transcribed spacer (ITS) sequences from two continental‐scale sampling networks in North America and cluster them into operational taxonomic units (OTUs) at 97% similarity. Using climate and soil data, we fit ecological niche models (ENMs) based on logistic ridge regression for all OTUs present in at least 10 sites (n = 8597). To describe the compositional turnover of soil fungal assemblages over climatic gradients, we introduce a novel niche‐based metric of climate sensitivity, the Sørensen climate sensitivity index. Finally, we map climate sensitivity across North America.

    Results

    ENMs have a mean out‐of‐sample predictive accuracy of 73.8%, with temperature variables being strong predictors of fungal distributions. Soil fungal climate niches clump together across environmental space, which suggests common physiological limits and predicts abrupt changes in composition with respect to changes in climate. Soil fungi in North American climates are more likely to be limited by cold and dry conditions than by warm and wet conditions, and ectomycorrhizal fungi generally tolerate colder temperatures than saprotrophic fungi. Sørensen climate sensitivity exhibits a multimodal distribution across environmental space, with a peak in climates corresponding to boreal forests.

    Main Conclusions

    The boreal forest occupies an especially precarious region of environmental space for the composition of soil fungal assemblages in North America, as even small degrees of warming could trigger large compositional changes characterized mainly by an influx of warm‐adapted species.

     
    more » « less
  4. Site description. This data package consists of data obtained from sampling surface soil (the 0-7.6 cm depth profile) in black mangrove (Avicennia germinans) dominated forest and black needlerush (Juncus roemerianus) saltmarsh along the Gulf of Mexico coastline in peninsular west-central Florida, USA. This location has a subtropical climate with mean daily temperatures ranging from 15.4 °C in January to 27.8 °C in August, and annual precipitation of 1336 mm. Precipitation falls as rain primarily between June and September. Tides are semi-diurnal, with 0.57 m median amplitudes during the year preceding sampling (U.S. NOAA National Ocean Service, Clearwater Beach, Florida, station 8726724). Sea-level rise is 4.0 ± 0.6 mm per year (1973-2020 trend, mean ± 95 % confidence interval, NOAA NOS Clearwater Beach station). The A. germinans mangrove zone is either adjacent to water or fringed on the seaward side by a narrow band of red mangrove (Rhizophora mangle). A near-monoculture of J. roemerianus is often adjacent to and immediately landward of the A. germinans zone. The transition from the mangrove to the J. roemerianus zone is variable in our study area. An abrupt edge between closed-canopy mangrove and J. roemerianus monoculture may extend for up to several hundred meters in some locations, while other stretches of ecotone present a gradual transition where smaller, widely spaced trees are interspersed into the herbaceous marsh. Juncus roemerianus then extends landward to a high marsh patchwork of succulent halophytes (including Salicornia bigellovi, Sesuvium sp., and Batis maritima), scattered dwarf mangrove, and salt pans, followed in turn by upland vegetation that includes Pinus sp. and Serenoa repens. Field design and sample collection. We established three study sites spaced at approximately 5 km intervals along the western coastline of the central Florida peninsula. The sites consisted of the Salt Springs (28.3298°, -82.7274°), Energy Marine Center (28.2903°, -82.7278°), and Green Key (28.2530°, -82.7496°) sites on the Gulf of Mexico coastline in Pasco County, Florida, USA. At each site, we established three plot pairs, each consisting of one saltmarsh plot and one mangrove plot. Plots were 50 m^2 in size. Plots pairs within a site were separated by 230-1070 m, and the mangrove and saltmarsh plots composing a pair were 70-170 m apart. All plot pairs consisted of directly adjacent patches of mangrove forest and J. roemerianus saltmarsh, with the mangrove forests exhibiting a closed canopy and a tree architecture (height 4-6 m, crown width 1.5-3 m). Mangrove plots were located at approximately the midpoint between the seaward edge (water-mangrove interface) and landward edge (mangrove-marsh interface) of the mangrove zone. Saltmarsh plots were located 20-25 m away from any mangrove trees and into the J. roemerianus zone (i.e., landward from the mangrove-marsh interface). Plot pairs were coarsely similar in geomorphic setting, as all were located on the Gulf of Mexico coastline, rather than within major sheltering formations like Tampa Bay, and all plot pairs fit the tide-dominated domain of the Woodroffe classification (Woodroffe, 2002, "Coasts: Form, Process and Evolution", Cambridge University Press), given their conspicuous semi-diurnal tides. There was nevertheless some geomorphic variation, as some plot pairs were directly open to the Gulf of Mexico while others sat behind keys and spits or along small tidal creeks. Our use of a plot-pair approach is intended to control for this geomorphic variation. Plot center elevations (cm above mean sea level, NAVD 88) were estimated by overlaying the plot locations determined with a global positioning system (Garmin GPS 60, Olathe, KS, USA) on a LiDAR-derived bare-earth digital elevation model (Dewberry, Inc., 2019). The digital elevation model had a vertical accuracy of ± 10 cm (95 % CI) and a horizontal accuracy of ± 116 cm (95 % CI). Soil samples were collected via coring at low tide in June 2011. From each plot, we collected a composite soil sample consisting of three discrete 5.1 cm diameter soil cores taken at equidistant points to 7.6 cm depth. Cores were taken by tapping a sleeve into the soil until its top was flush with the soil surface, sliding a hand under the core, and lifting it up. Cores were then capped and transferred on ice to our laboratory at the University of South Florida (Tampa, Florida, USA), where they were combined in plastic zipper bags, and homogenized by hand into plot-level composite samples on the day they were collected. A damp soil subsample was immediately taken from each composite sample to initiate 1 y incubations for determination of active C and N (see below). The remainder of each composite sample was then placed in a drying oven (60 °C) for 1 week with frequent mixing of the soil to prevent aggregation and liberate water. Organic wetland soils are sometimes dried at 70 °C, however high drying temperatures can volatilize non-water liquids and oxidize and decompose organic matter, so 50 °C is also a common drying temperature for organic soils (Gardner 1986, "Methods of Soil Analysis: Part 1", Soil Science Society of America); we accordingly chose 60 °C as a compromise between sufficient water removal and avoidance of non-water mass loss. Bulk density was determined as soil dry mass per core volume (adding back the dry mass equivalent of the damp subsample removed prior to drying). Dried subsamples were obtained for determination of soil organic matter (SOM), mineral texture composition, and extractable and total carbon (C) and nitrogen (N) within the following week. Sample analyses. A dried subsample was apportioned from each composite sample to determine SOM as mass loss on ignition at 550 °C for 4 h. After organic matter was removed from soil via ignition, mineral particle size composition was determined using a combination of wet sieving and density separation in 49 mM (3 %) sodium hexametaphosphate ((NaPO_3)_6) following procedures in Kettler et al. (2001, Soil Science Society of America Journal 65, 849-852). The percentage of dry soil mass composed of silt and clay particles (hereafter, fines) was calculated as the mass lost from dispersed mineral soil after sieving (0.053 mm mesh sieve). Fines could have been slightly underestimated if any clay particles were burned off during the preceding ignition of soil. An additional subsample was taken from each composite sample to determine extractable N and organic C concentrations via 0.5 M potassium sulfate (K_2SO_4) extractions. We combined soil and extractant (ratio of 1 g dry soil:5 mL extractant) in plastic bottles, reciprocally shook the slurry for 1 h at 120 rpm, and then gravity filtered it through Fisher G6 (1.6 μm pore size) glass fiber filters, followed by colorimetric detection of nitrite (NO_2^-) + nitrate (NO_3^-) and ammonium (NH_4^+) in the filtrate (Hood Nowotny et al., 2010,Soil Science Society of America Journal 74, 1018-1027) using a microplate spectrophotometer (Biotek Epoch, Winooski, VT, USA). Filtrate was also analyzed for dissolved organic C (referred to hereafter as extractable organic C) and total dissolved N via combustion and oxidation followed by detection of the evolved CO_2 and N oxide gases on a Formacs HT TOC/TN analyzer (Skalar, Breda, The Netherlands). Extractable organic N was then computed as total dissolved N in filtrate minus extractable mineral N (itself the sum of extractable NH_4-N and NO_2-N + NO_3-N). We determined soil total C and N from dried, milled subsamples subjected to elemental analysis (ECS 4010, Costech, Inc., Valencia, CA, USA) at the University of South Florida Stable Isotope Laboratory. Median concentration of inorganic C in unvegetated surface soil at our sites is 0.5 % of soil mass (Anderson, 2019, Univ. of South Florida M.S. thesis via methods in Wang et al., 2011, Environmental Monitoring and Assessment 174, 241-257). Inorganic C concentrations are likely even lower in our samples from under vegetation, where organic matter would dilute the contribution of inorganic C to soil mass. Nevertheless, the presence of a small inorganic C pool in our soils may be counted in the total C values we report. Extractable organic C is necessarily of organic C origin given the method (sparging with HCl) used in detection. Active C and N represent the fractions of organic C and N that are mineralizable by soil microorganisms under aerobic conditions in long-term soil incubations. To quantify active C and N, 60 g of field-moist soil were apportioned from each composite sample, placed in a filtration apparatus, and incubated in the dark at 25 °C and field capacity moisture for 365 d (as in Lewis et al., 2014, Ecosphere 5, art59). Moisture levels were maintained by frequently weighing incubated soil and wetting them up to target mass. Daily CO_2 flux was quantified on 29 occasions at 0.5-3 week intervals during the incubation period (with shorter intervals earlier in the incubation), and these per day flux rates were integrated over the 365 d period to compute an estimate of active C. Observations of per day flux were made by sealing samples overnight in airtight chambers fitted with septa and quantifying headspace CO_2 accumulation by injecting headspace samples (obtained through the septa via needle and syringe) into an infrared gas analyzer (PP Systems EGM 4, Amesbury, MA, USA). To estimate active N, each incubated sample was leached with a C and N free, 35 psu solution containing micronutrients (Nadelhoffer, 1990, Soil Science Society of America Journal 54, 411-415) on 19 occasions at increasing 1-6 week intervals during the 365 d incubation, and then extracted in 0.5 M K_2SO_4 at the end of the incubation in order to remove any residual mineral N. Active N was then quantified as the total mass of mineral N leached and extracted. Mineral N in leached and extracted solutions was detected as NH_4-N and NO_2-N + NO_3-N via colorimetry as above. This incubation technique precludes new C and N inputs and persistently leaches mineral N, forcing microorganisms to meet demand by mineralizing existing pools, and thereby directly assays the potential activity of soil organic C and N pools present at the time of soil sampling. Because this analysis commences with disrupting soil physical structure, it is biased toward higher estimates of active fractions. Calculations. Non-mobile C and N fractions were computed as total C and N concentrations minus the extractable and active fractions of each element. This data package reports surface-soil constituents (moisture, fines, SOM, and C and N pools and fractions) in both gravimetric units (mass constituent / mass soil) and areal units (mass constituent / soil surface area integrated through 7.6 cm soil depth, the depth of sampling). Areal concentrations were computed as X × D × 7.6, where X is the gravimetric concentration of a soil constituent, D is soil bulk density (g dry soil / cm^3), and 7.6 is the sampling depth in cm. 
    more » « less
  5. Abstract

    1. The occurrence and distributions of wildlife populations and communities are shifting as a result of global changes. To evaluate whether these shifts are negatively impacting biodiversity processes, it is critical to monitor the status, trends and effects of environmental variables on entire communities. However, modelling the dynamics of multiple species simultaneously can require large amounts of diverse data, and few modelling approaches exist to simultaneously provide species and community‐level inferences.

    2. We present an ‘integrated community occupancy model’ (ICOM) that unites principles of data integration and hierarchical community modelling in a single framework to provide inferences on species‐specific and community occurrence dynamics using multiple data sources. The ICOM combines replicated and nonreplicated detection–nondetection data sources using a hierarchical framework that explicitly accounts for different detection and sampling processes across data sources. We use simulations to compare the ICOM to previously developed hierarchical community occupancy models and single species integrated distribution models. We then apply our model to assess the occurrence and biodiversity dynamics of foliage‐gleaning birds in the White Mountain National Forest in the northeastern USA from 2010 to 2018 using three independent data sources.

    3. Simulations reveal that integrating multiple data sources in the ICOM increased precision and accuracy of species and community‐level inferences compared to single data source models, although benefits of integration were dependent on the information content of individual data sources (e.g. amount of replication). Compared to single species models, the ICOM yielded more precise species‐level estimates. Within our case study, the ICOM had the highest out‐of‐sample predictive performance compared to single species models and models that used only a subset of the three data sources.

    4. The ICOM provides more precise estimates of occurrence dynamics compared to multi‐species models using single data sources or integrated single‐species models. We further found that the ICOM had improved predictive performance across a broad region of interest with an empirical case study of forest birds. The ICOM offers an attractive approach to estimate species and biodiversity dynamics, which is additionally valuable to inform management objectives of both individual species and their broader communities.

     
    more » « less