The acid-catalyzed thiol–ene reaction (ACT) is a unique thiol–X conjugation strategy that produces S,X-acetal conjugates. Unlike the well-known radical-mediated thiol–ene and anion-mediated thiol-Michael reactions that produce static thioether bonds, acetals provide unique function for various fields such as drug delivery and protecting group chemistries; however, this reaction is relatively underutilized for creating new and unique materials owing to the unexplored reactivity over a broad set of substrates and potential side reactions. Solution-phase studies using a range of thiol and alkene substrates were conducted to evaluate the ACT reaction as a conjugation strategy. Substrates that efficiently undergo cationic polymerizations, such asmore »
Two-photon uncaging of bioactive thiols in live cells at wavelengths above 800 nm
Photoactivatable protecting groups (PPGs) are useful for a broad range of applications ranging from biology to materials science. In chemical biology, induction of biological processes via photoactivation is a powerful strategy for achieving spatiotemporal control. The importance of cysteine, glutathione, and other bioactive thiols in regulating protein structure/activity and cell redox homeostasis makes modulation of thiol activity particularly useful. One major objective for enhancing the utility of photoactivatable protecting groups (PPGs) in living systems is creating PPGs with longer wavelength absorption maxima and efficient two-photon (TP) absorption. Toward these objectives, we developed a carboxyl- and dimethylamine-functionalized nitrodibenzofuran PPG scaffold (cDMA-NDBF) for thiol photoactivation, which has a bathochromic shift in the one-photon absorption maximum from λ max = 315 nm with the unfunctionalized NDBF scaffold to λ max = 445 nm. While cDMA-NDBF-protected thiols are stable in the presence of UV irradiation, they undergo efficient broad-spectrum TP photolysis at wavelengths as long as 900 nm. To demonstrate the wavelength orthogonality of cDMA-NDBF and NDBF photolysis in a biological setting, caged farnesyltransferase enzyme inhibitors (FTI) were prepared and selectively photoactivated in live cells using 850–900 nm TP light for cDMA-NDBF-FTI and 300 nm UV light for NDBF-FTI. These experiments represent the first more »
- Award ID(s):
- 1904865
- Publication Date:
- NSF-PAR ID:
- 10291099
- Journal Name:
- Organic & Biomolecular Chemistry
- Volume:
- 19
- Issue:
- 10
- Page Range or eLocation-ID:
- 2213 to 2223
- ISSN:
- 1477-0520
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract One-photon-absorbing photosensitizers are commonly used in homogeneous photocatalysis which require the absorption of ultraviolet (UV) /visible light to populate the desired excited states with adequate energy and lifetime. Nevertheless, the limited penetration depth and competing absorption by organic substrates of UV/visible light calls upon exploring the utilization of longer-wavelength irradiation, such as near-infrared light (λ irr > 700 nm). Despite being found applications in photodynamic therapy and bioimaging, two-photon absorption (TPA), the simultaneous absorption of two photons by one molecule, has been rarely explored in homogeneous photocatalysis. Herein, we report a group of ruthenium polypyridyl complexes possessing TPA capability that canmore »
-
Acetaldehyde cations (CH 3 CHO + ) were prepared using single-photon vacuum ultraviolet ionization of CH 3 CHO in a molecular beam and the fragmentation dynamics explored over the photolysis wavelength range 390–210 nm using velocity-map ion imaging and photofragment yield (PHOFY) spectroscopy. Four fragmentation channels are characterized: CH 3 CHO + → C 2 H 3 O + + H (I), CH 3 CHO + → HCO + + CH 3 (II), CH 3 CHO + → CH 3 + + HCO (III), CH 3 CHO + → CH 4 + + CO (IV). Channels (I), (II), and (IV)more »
-
Reported here is the design and synthesis of among the first pyridine terminated acceptor–donor–acceptor–donor–acceptor (A–D–A–D–A) based π-conjugated oligomers, EH_DPP_2T_Pyr ( 1 ), EH_II_2T_Pyr ( 2 ), and EH_II_1T_Pyr ( 3 ). The molecules incorporate thiophenes as electron donors, isoindigo/diketopyrrolopyrrole as electron acceptors, and are capped with pyridine, a weak electron acceptor, on both ends. All target oligomers show attractive photophysical properties, broad absorption in the visible region ( λ max = 636 nm, 575 nm, and 555 nm, for 1 , 2 , and 3 , respectively) and emission which extends to the IR region (emission λ max = 734more »
-
The methylation of mercury is known to depend on the chemical forms of mercury (Hg) present in the environment and the methylating bacterial activity. In sulfidic sediments, under conditions of supersaturation with respect to metacinnabar, recent research has shown that mercury precipitates as β-HgS(s) nanoparticles (β-HgS(s) nano ). Few studies have examined the precipitation of β-HgS(s) nano in the presence of marine dissolved organic matter (DOM). In this work, we used dynamic light scattering (DLS) coupled with UV-Vis spectroscopy and transmission electron microscopy (TEM) to investigate the formation and fate of β-HgS(s) nano formed in association with marine DOM extractedmore »