skip to main content


Title: Explorations of Designing Spatial Classroom Analytics with Virtual Prototyping
Despite the potential of spatial displays for supporting teachers’ classroom orchestration through real-time classroom analytics, the process to design these displays is a challenging and under-explored topic in the learning analytics (LA) community. This paper proposes a mid-fidelity Virtual Prototyping method (VPM), which involves simulating a classroom environment and candidate designs in virtual space to address these challenges. VPM allows for rapid prototyping of spatial features, requires no specialized hardware, and enables teams to conduct remote evaluation sessions. We report observations and findings from an initial exploration with five potential users through a design process utilizing VPM to validate designs for an AR-based spatial display in the context of middle-school orchestration tools. We found that designs created using virtual prototyping sufficiently conveyed a sense of three-dimensionality to address subtle design issues like occlusion and depth perception. We discuss the opportunities and limitations of applying virtual prototyping, particularly its potential to allow for more robust co-design with stakeholders earlier in the design process.  more » « less
Award ID(s):
1822861
NSF-PAR ID:
10291171
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the 11th International Learning Analytics & Knowledge Conference (LAK21)
Page Range / eLocation ID:
518 to 524
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Schmidt, A. ; Väänänen, K. ; Goyal, T. ; Kristensson, P. O. ; Peters, A. ; Mueller, S. ; Williamson, J. R. ; Wilson, M. L. (Ed.)
    Enabling students to dynamically transition between individual and collaborative learning activities has great potential to support better learning. We explore how technology can support teachers in orchestrating dynamic transitions during class. Working with five teachers and 199 students over 22 class sessions, we conducted classroom-based prototyping of a co-orchestration technology ecosystem that supports the dynamic pairing of students working with intelligent tutoring systems. Using mixed-methods data analysis, we study the resulting observed classroom dynamics, and how teachers and students perceived and experienced dynamic transitions as supported by our technology. We discover a potential tension between teachers’ and students’ preferred level of control: students prefer more control over the dynamic transitions that teachers are hesitant to grant. Our study reveals design implications and challenges for future human-AI co-orchestration in classroom use, bringing us closer to realizing the vision of highly-personalized smart classrooms that can address the unique needs of each student. 
    more » « less
  2. We present a design-based exploration of the potential to reinterpret glyph-based visualization of scalar fields on 3D surfaces, a traditional scientific visualization technique, as a data physicalization technique. Even with the best virtual reality displays, users often struggle to correctly interpret spatial relationships in 3D datasets; thus, we are motivated to understand the extent to which traditional scientific visualization methods can translate to physical media where users may simultaneously leverage their visual systems and tactile senses to, in theory, better understand and connect with the data of interest. This pictorial traces the process of our design for a specific user study experiment: (1) inspiration, (2) exploring the data physicalization design space, (3) prototyping with 3D printing, (4) applying the techniques to different synthetic datasets. We call our most recent and compelling visual/tactile design boxcars on potatoes, and the next step in the research is to run a user-based evaluation to elucidate how this design compares to several of the others pictured here. 
    more » « less
  3. Abstract  
    more » « less
  4. 3D printing (3DP) has been becoming more and more popular throughout the education system from Kindergarten to University. High school is a critical period for students to decide their imminent university major selection which in turn will impact their future career choices. High school students are usually intrigued by hands-on tool such as 3DP which is also an important contributor to other courses such as robotics. The recent years have seen more investment and availability of 3DP in high schools, especially Career and Technical Education (CTE) programs. However, mere availability of 3DP is not enough for teachers to fully utilize its potential in their classrooms. While basic 3DP skills can be obtained through a few hours of training, the basic training is insufficient to ensure effective teaching Engineering Design Process (EDP) at the high school level. To address this problem, this project develops an EDP course tightly integrated with 3DP for preservice teachers (PST) who are going to enter the workforce in high schools. Engineering design process (EDP) has become an essential part for preservice teachers (PST), especially for high school STEM. 3DP brought transformative change to EDP which is an iterative process that needs virtual/physical prototyping. The new PST course on EDP will be purposefully integrated with an in-depth discussion of 3DP. The approach is to dissect a 3D printer’s hardware, explain each component’s function, introduce each component’s manufacturing methods, describe possible defects, and elucidate what works and what does not. This has at least four benefits: 1) PSTs will know what is possibly wrong when a printer or printing process fails, 2) PSTs will learn more manufacturing processes besides 3DP that can be used to support engineering design prototyping, 3) PSTs will know how to design something that can meet the manufacturing constraints, i.e., can be actually fabricated, and 4) reduce errors and frustrations caused by failed design and failed prints which happen frequently to novices in 3DP. After graduation, PSTs will bring the knowledge to their future high schools and will be more confident in teaching engineering design, reverse engineering, prototype development, manufacturing, and technology. The developed course will be implemented and assessed in a future semester. 
    more » « less
  5. Recently, the HCI community has seen increased interest in the design of teaching augmentation (TA): tools that extend and complement teachers' pedagogical abilities during ongoing classroom activities. Examples of TA systems are emerging across multiple disciplines, taking various forms: e.g., ambient displays, wearables, or learning analytics dashboards. However, these diverse examples have not been analyzed together to derive more fundamental insights into the design of teaching augmentation. Addressing this opportunity, we broadly synthesize existing cases to propose the TA framework. Our framework specifies a rich design space in five dimensions, to support the design and analysis of teaching augmentation. We contextualize the framework using existing designs cases, to surface underlying design trade-offs: for example, balancing actionability of presented information with teachers' needs for professional autonomy, or balancing unobtrusiveness with informativeness in the design of TA systems. Applying the TA framework, we identify opportunities for future research and design. 
    more » « less