Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Recent work has explored how complementary strengths of humans and artificial intelligence (AI) systems might be productively combined. However, successful forms of human–AI partnership have rarely been demonstrated in real‐world settings. We present the iterative design and evaluation of Lumilo, smart glasses that help teachers help their students in AI‐supported classrooms by presenting real‐time analytics about students’ learning, metacognition, and behavior. Results from a field study conducted in K‐12 classrooms indicate that students learn more when teachers and AI tutors work together during class. We discuss implications of this research for the design of human–AI partnerships. We argue for more participatory approaches to research and design in this area, in which practitioners and other stakeholders are deeply, meaningfully involved throughout the process. Furthermore, we advocate for theory‐building and for principled approaches to the study of human–AI decision‐making in real‐world contexts.more » « less
-
Schmidt, A.; Väänänen, K.; Goyal, T.; Kristensson, P. O.; Peters, A.; Mueller, S.; Williamson, J. R.; Wilson, M. L. (Ed.)Enabling students to dynamically transition between individual and collaborative learning activities has great potential to support better learning. We explore how technology can support teachers in orchestrating dynamic transitions during class. Working with five teachers and 199 students over 22 class sessions, we conducted classroom-based prototyping of a co-orchestration technology ecosystem that supports the dynamic pairing of students working with intelligent tutoring systems. Using mixed-methods data analysis, we study the resulting observed classroom dynamics, and how teachers and students perceived and experienced dynamic transitions as supported by our technology. We discover a potential tension between teachers’ and students’ preferred level of control: students prefer more control over the dynamic transitions that teachers are hesitant to grant. Our study reveals design implications and challenges for future human-AI co-orchestration in classroom use, bringing us closer to realizing the vision of highly-personalized smart classrooms that can address the unique needs of each student.more » « less
-
Weinberger, A.; Chen, W.; Hernández-Leo, D.; Chen, B. (Ed.)Dynamically transitioning between individual and collaborative learning has been hypothesized to have positive effects, such as providing the optimal learning mode based on students’ needs. There are, however, challenges in orchestrating these transitions in real-time while managing a classroom of students. AI-based orchestration tools have the potential to alleviate some of the orchestration load for teachers. In this study, we describe a sequence of three design sessions with teachers where we refine prototypes of an orchestration tool to support dynamic transitions. We leverage design narratives and conjecture mapping for the design of our novel orchestration tool. Our contributions include the orchestration tool itself; a description of how novel tool features were revised throughout the sessions with teachers, including shared control between teachers, students, and AI and the use of AI to support dynamic transitions, and a reflection of the changes to our design and theoretical conjectures.more » « less
-
Rodrigo, M.M.; Matsuda, N.; Cristea, A.I.; Dimitrova, V. (Ed.)It might be highly effective if students could transition dynamically between individual and collaborative learning activities, but how could teachers manage such complex classroom scenarios? Although recent work in AIED has focused on teacher tools, little is known about how to orchestrate dynamic transitions between individual and collaborative learning. We created a novel technology ecosystem that supports these dynamic transitions. The ecosystem integrates a novel teacher orchestration tool that provides monitoring support and pairing suggestions with two AI-based tutoring systems that support individual and collaborative learning, respectively. We tested the feasibility of this ecosystem in a classroom study with 5 teachers and 199 students over 22 class sessions. We found that the teachers were able to manage the dynamic transitions and valued them. The study contributes a new technology ecosystem for dynamically transitioning between individual and collaborative learning, plus insight into the orchestration functionality that makes these transitions feasible.more » « less
-
null (Ed.)Despite the potential of spatial displays for supporting teachers’ classroom orchestration through real-time classroom analytics, the process to design these displays is a challenging and under-explored topic in the learning analytics (LA) community. This paper proposes a mid-fidelity Virtual Prototyping method (VPM), which involves simulating a classroom environment and candidate designs in virtual space to address these challenges. VPM allows for rapid prototyping of spatial features, requires no specialized hardware, and enables teams to conduct remote evaluation sessions. We report observations and findings from an initial exploration with five potential users through a design process utilizing VPM to validate designs for an AR-based spatial display in the context of middle-school orchestration tools. We found that designs created using virtual prototyping sufficiently conveyed a sense of three-dimensionality to address subtle design issues like occlusion and depth perception. We discuss the opportunities and limitations of applying virtual prototyping, particularly its potential to allow for more robust co-design with stakeholders earlier in the design process.more » « less
-
Hsiao, I.; Sahebi, S.; Bouchet, F.; Vie, J. J. (Ed.)Constructing effective and well-balanced learning groups is important for collaborative learning. Past research explored how group formation policies affect learners’ behaviors and performance. With the different classroom contexts, many group formation policies work in theory, yet their feasibility is rarely investigated in authentic class sessions. In the current work, we define feasibility as the ratio of students being able to find available partners that satisfy a given group formation policy. Informed by user-centered research in K-12 classrooms, we simulated pairing policies on historical data from an intelligent tutoring system (ITS), a process we refer to as SimPairing. As part of the process for designing a pairing orchestration tool, this study contributes insights into the feasibility of four dynamic pairing policies, and how the feasibility varies depending on parameters in the pairing policies or different classes. We found that on average, dynamically pairing students based on their in-the-moment wheel-spinning status can pair most struggling students, even with moderate constraints of restricted pairings. In addition, we found there is a trade-off between the required knowledge heterogeneity and policy feasibility. Furthermore, the feasibility of pairing policies can vary across different classes, suggesting a need for customization regarding pairing policies.more » « less
-
null (Ed.)Orchestration tools may support K-12 teachers in facilitating student learning, especially when designed to address classroom stakeholders’ needs. Our previous work revealed a need for human-AI shared control when dynamically pairing students for collaborative learning in the classroom, but offered limited guidance on the role each agent should take. In this study, we designed storyboards for scenarios where teachers, students and AI co-orchestrate dynamic pairing when using AI-based adaptive math software for individual and collaborative learning. We surveyed 54 math teachers on their co-orchestration preferences. We found that teachers would like to share control with the AI to lessen their orchestration load. As well, they would like to have the AI propose student pairs with explanations, and identify risky proposed pairings. However, teachers are hesitant to let the AI auto-pair students even if they are busy, and are less inclined to let AI override teacher-proposed pairing. Our study contributes to teachers’ needs, preference, and boundaries for how they want to share the task and control of student pairing with the AI and students, and design implications in human-AI co-orchestration tools.more » « less
-
Recently, the HCI community has seen increased interest in the design of teaching augmentation (TA): tools that extend and complement teachers' pedagogical abilities during ongoing classroom activities. Examples of TA systems are emerging across multiple disciplines, taking various forms: e.g., ambient displays, wearables, or learning analytics dashboards. However, these diverse examples have not been analyzed together to derive more fundamental insights into the design of teaching augmentation. Addressing this opportunity, we broadly synthesize existing cases to propose the TA framework. Our framework specifies a rich design space in five dimensions, to support the design and analysis of teaching augmentation. We contextualize the framework using existing designs cases, to surface underlying design trade-offs: for example, balancing actionability of presented information with teachers' needs for professional autonomy, or balancing unobtrusiveness with informativeness in the design of TA systems. Applying the TA framework, we identify opportunities for future research and design.more » « less
-
Educational AI (AIEd) systems are increasingly designed and evaluated with an awareness of the hybrid nature of adaptivity in real-world educational settings. In practice, beyond being a property of AIEd systems alone, adaptivity is often jointly enacted by AI systems and human facilitators (e.g., teachers or peers). Despite much recent research activity, theoretical and conceptual guidance for the design of such human–AI systems remains limited. In this paper we explore how adaptivity may be shared across AIEd systems and the various human stakeholders who work with them. Based on a comparison of prior frameworks, which tend to examine adaptivity in AIEd systems or human coaches separately, we first synthesize a set of dimensions general enough to capture human–AI hybrid adaptivity. Using these dimensions, we then present a conceptual framework to map distinct ways in which humans and AIEd systems can augment each other’s abilities. Through examples, we illustrate how this framework can be used to characterize prior work and envision new possibilities for human–AI hybrid approaches in education.more » « less
-
Dynamically transitioning between individual and collaborative learning activities during a class session (i.e., in an un-planned way, as-the-need-arises) has advantages for students, but existing orchestration tools are not designed to support such transitions. This work reports findings from a technology probe study that explored alternative designs for classroom co-orchestration support for dynamically transitioning between individual and collaborative learning, focused on how control over the transitions should be divided or shared among teachers, students, and orchestration system. This study involved 1) a pilot in an authentic classroom scenario with AI support for individual and collaborative learning; and 2) design workshops and interviews with students and teachers. Findings from the study suggest the need for hybrid control between students, teachers, and AI systems over transitions as well as for adaptivity and/or adaptability for different classrooms, teachers, and students’ prior knowledge. This study is the first to explore human–AI control over dynamic transitions between individual and collaborative learning in actual classrooms.more » « less
An official website of the United States government

Full Text Available