skip to main content


Title: Reactivity of Thiol-Rich Zn Sites in Diacylglycerol-Sensing PKC C1 Domain Probed by NMR Spectroscopy
Conserved homology 1 (C1) domains are peripheral zinc finger domains that are responsible for recruiting their host signaling proteins, including Protein Kinase C (PKC) isoenzymes, to diacylglycerol-containing lipid membranes. In this work, we investigated the reactivity of the C1 structural zinc sites, using the cysteine-rich C1B regulatory region of the PKCα isoform as a paradigm. The choice of Cd 2+ as a probe was prompted by previous findings that xenobiotic metal ions modulate PKC activity. Using solution NMR and UV-vis spectroscopy, we found that Cd 2+ spontaneously replaced Zn 2+ in both structural sites of the C1B domain, with the formation of all-Cd and mixed Zn/Cd protein species. The Cd 2+ substitution for Zn 2+ preserved the C1B fold and function, as probed by its ability to interact with a potent tumor-promoting agent. Both Cys 3 His metal-ion sites of C1B have higher affinity to Cd 2+ than Zn 2+ , but are thermodynamically and kinetically inequivalent with respect to the metal ion replacement, despite the identical coordination spheres. We find that even in the presence of the oxygen-rich sites presented by the neighboring peripheral membrane-binding C2 domain, the thiol-rich sites can successfully compete for the available Cd 2+ . Our results indicate that Cd 2+ can target the entire membrane-binding regulatory region of PKCs, and that the competition between the thiol- and oxygen-rich sites will likely determine the activation pattern of PKCs.  more » « less
Award ID(s):
1905116
NSF-PAR ID:
10291177
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Frontiers in Molecular Biosciences
Volume:
8
ISSN:
2296-889X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Babitzke, Paul (Ed.)
    ABSTRACT Oxidative stress causes cellular damage, including DNA mutations, protein dysfunction, and loss of membrane integrity. Here, we discovered that a TrmB (transcription regulator of mal operon) family protein (Pfam PF01978) composed of a single winged-helix DNA binding domain (InterPro IPR002831) can function as thiol-based transcriptional regulator of oxidative stress response. Using the archaeon Haloferax volcanii as a model system, we demonstrate that the TrmB-like OxsR is important for recovery of cells from hypochlorite stress. OxsR is shown to bind specific regions of genomic DNA, particularly during hypochlorite stress. OxsR-bound intergenic regions were found proximal to oxidative stress operons, including genes associated with thiol relay and low molecular weight thiol biosynthesis. Further analysis of a subset of these sites revealed OxsR to function during hypochlorite stress as a transcriptional activator and repressor. OxsR was shown to require a conserved cysteine (C24) for function and to use a CG-rich motif upstream of conserved BRE/TATA box promoter elements for transcriptional activation. Protein modeling suggested the C24 is located at a homodimer interface formed by antiparallel α helices, and that oxidation of this cysteine would result in the formation of an intersubunit disulfide bond. This covalent linkage may promote stabilization of an OxsR homodimer with the enhanced DNA binding properties observed in the presence of hypochlorite stress. The phylogenetic distribution TrmB family proteins, like OxsR, that have a single winged-helix DNA binding domain and conserved cysteine residue suggests this type of redox signaling mechanism is widespread in Archaea. IMPORTANCE TrmB-like proteins, while not yet associated with redox stress, are found in bacteria and widespread in archaea. Here, we expand annotation of a large group of TrmB-like single winged-helix DNA binding domain proteins from diverse archaea to function as thiol-based transcriptional regulators of oxidative stress response. Using Haloferax volcanii as a model, we reveal that the TrmB-like OxsR functions during hypochlorite stress as a transcriptional activator and repressor of an extensive gene coexpression network associated with thiol relay and other related activities. A conserved cysteine residue of OxsR serves as the thiol-based sensor for this function and likely forms an intersubunit disulfide bond during hypochlorite stress that stabilizes a homodimeric configuration with enhanced DNA binding properties. A CG-rich DNA motif in the promoter region of a subset of sites identified to be OxsR-bound is required for regulation; however, not all sites have this motif, suggesting added complexity to the regulatory network. 
    more » « less
  2. Abstract

    De novodesign provides an attractive approach, which allows one to test and refine the principles guiding metalloproteins in defining the geometry and reactivity of their metal ion cofactors. Although impressive progress has been made in designing proteins that bind transition metal ions including iron–sulfur clusters, the design of tetranuclear clusters with oxygen‐rich environments remains in its infancy. In previous work, we described the design of homotetrameric four‐helix bundles that bind tetra‐Zn2+clusters. The crystal structures of the helical proteins were in good agreement with the overall design, and the metal‐binding and conformational properties of the helical bundles in solution were consistent with the crystal structures. However, the correspondingapo‐proteins were not fully folded in solution. In this work, we design three peptides, based on the crystal structure of the original bundles. One of the peptides forms tetramers in aqueous solution in the absence of metal ions as assessed by CD and NMR. It also binds Zn2+in the intended stoichiometry. These studies strongly suggest that the desired structure has been achieved in theapostate, providing evidence that the peptide is able to actively impart the designed geometry to the metal cluster.

     
    more » « less
  3. One of the mechanisms by which toxic metal ions interfere with cellular functions is ionic mimicry, where they bind to protein sites in lieu of native metals Ca2+ and Zn2+. The influence of crowded intracellular environments on these interactions is not well understood. Here, we demonstrate the application of in-cell and lysate NMR spectroscopy to obtain atomic-level information on how a potent environmental toxin cadmium interacts with its protein targets. The experiments, conducted in intact E. coli cells and their lysates, revealed that Cd2+ can profoundly affect the quinary interactions of its protein partners, and can replace Zn2+ in both labile and non-labile protein structural sites without significant perturbation of the membrane binding function. Surprisingly, in crowded molecular environments Cd2+ can effectively target not only all-sulfur and mixed sulfur/nitrogen but also all-oxygen coordination sites. The sulfur-rich coordination environments show significant promise for bioremedial applications, as demonstrated by the ability of the designed protein scaffold α3DIV to sequester intracellular cadmium. Our data suggests that in-cell NMR spectroscopy is a powerful tool for probing interactions of toxic metal ions with their potential protein targets, and for the assessment of potency of sequestering agents. 
    more » « less
  4. Abstract

    Transient receptor potential vanilloid (TRPV) channels play various important roles in human physiology. As membrane proteins, these channels are modulated by their endogenous lipid environment as the recent wealth of structural studies has revealed functional and structural lipid binding sites. Additionally, it has been shown that exogenous ligands can exchange with some of these lipids to alter channel gating. Here, we used molecular dynamics simulations to examine how one member of the TRPV family, TRPV2, interacts with endogenous lipids and the pharmacological modulator cannabidiol (CBD). By computationally reconstituting TRPV2 into a typical plasma membrane environment, which includes phospholipids, cholesterol, and phosphatidylinositol (PIP) in the inner leaflet, we showed that most of the interacting surface lipids are phospholipids without strong specificity for headgroup types. Intriguingly, we observed that the C‐terminal membrane proximal region of the channel binds preferentially to PIP lipids. We also modelled two structural lipids in the simulation: one in the vanilloid pocket and the other in the voltage sensor‐like domain (VSLD) pocket. The simulation shows that the VSLD lipid dampens the fluctuation of the VSLD residues, while the vanilloid lipid exhibits heterogeneity both in its binding pose and in its influence on protein dynamics. Addition of CBD to our simulation system led to an open selectivity filter and a structural rearrangement that includes a clockwise rotation of the ankyrin repeat domains, TRP helix, and VSLD. Together, these results reveal the interplay between endogenous lipids and an exogenous ligand and their effect on TRPV2 stability and channel gating.

     
    more » « less
  5. In biological systems, chemical and physical transformations of engineered silver nanomaterials (AgENMs) are mediated, in part, by proteins and other biomolecules. Metalloprotein interactions with AgENMs are also central in understanding toxicity, antimicrobial, and resistance mechanisms. Despite their readily available thiolate and amine ligands, zinc finger (ZF) peptides have thus far escaped study in reaction with AgENMs and their Ag( i ) oxidative dissolution product. We report spectroscopic studies that characterize AgENM and Ag( i ) interactions with two ZF peptides that differ in sequence, but not in metal binding ligands: the ZF consensus peptide CP-CCHC and the C-terminal zinc finger domain of HIV-1 nucleocapsid protein p7 (NCp7_C). Both ZF peptides catalyze AgENM (10 and 40 nm, citrate coated) dissolution and agglomeration, two important AgENM transformations that impact bioreactivity. AgENMs and their oxidative dissolution product, Ag( i )(aq), mediate changes to ZF peptide structure and metalation as well. Spectroscopic titrations of Ag( i ) into apo-ZF peptides show an Ag( i )–thiolate charge transfer band, indicative of Ag( i )–ZF binding. Fluorescence studies of the Zn( ii )–NCp_7 complex indicate that the Ag( i ) also effectively competes with the Zn( ii ) to drive Zn( ii ) displacement from the ZFs. Upon interaction with AgENMs, Zn( ii ) bound ZF peptides show a secondary structural change in circular dichroism spectroscopy toward an apo-like structure. The results suggest that Ag( i ) and AgENMs may alter ZF protein function within the cell. 
    more » « less