We present the discovery of TYC9191-519-1b (TOI-150b, TIC 271893367) and HD271181b (TOI-163b, TIC 179317684), two hot Jupiters initially detected using 30-min cadence Transiting Exoplanet Survey Satellite (TESS) photometry from Sector 1 and thoroughly characterized through follow-up photometry (CHAT, Hazelwood, LCO/CTIO, El Sauce, TRAPPIST-S), high-resolution spectroscopy (FEROS, CORALIE), and speckle imaging (Gemini/DSSI), confirming the planetary nature of the two signals. A simultaneous joint fit of photometry and radial velocity using a new fitting package juliet reveals that TOI-150b is a $1.254\pm 0.016\ \rm {R}_ \rm{J}$, massive ($2.61^{+0.19}_{-0.12}\ \rm {M}_ \rm{J}$) hot Jupiter in a 5.857-d orbit, while TOI-163b is an inflated ($R_ \rm{P}$ = $1.478^{+0.022}_{-0.029} \,\mathrm{ R}_ \rm{J}$, $M_ \rm{P}$ = $1.219\pm 0.11 \, \rm{M}_ \rm{J}$) hot Jupiter on a P = 4.231-d orbit; both planets orbit F-type stars. A particularly interesting result is that TOI-150b shows an eccentric orbit ($e=0.262^{+0.045}_{-0.037}$), which is quite uncommon among hot Jupiters. We estimate that this is consistent, however, with the circularization time-scale, which is slightly larger than the age of the system. These two hot Jupiters are both prime candidates for further characterization – in particular, both are excellent candidates for determining spin-orbit alignments via the Rossiter–McLaughlin (RM) effect and for characterizing atmospheric thermal structures using secondary eclipse observations considering they are both located closely to the James Webb Space Telescope (JWST) Continuous Viewing Zone (CVZ).
- Award ID(s):
- 2009528
- PAR ID:
- 10291179
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- Astronomical Journal
- ISSN:
- 2027-5943
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract We confirm the planetary nature of two gas giants discovered by the Transiting Exoplanet Survey Satellite to transit M dwarfs. TOI-3714 ( V = 15.24, J = 11.74) is an M2 dwarf hosting a hot Jupiter ( M p = 0.70 ± 0.03 M J and R p = 1.01 ± 0.03 R J ) on an orbital period of 2.154849 ± 0.000001 days with a resolved white dwarf companion. TOI-3629 ( V = 14.63, J = 11.42) is an M1 dwarf hosting a hot Jupiter ( M p = 0.26 ± 0.02 M J and R p =0.74 ± 0.02 R J ) on an orbital period of 3.936551 − 0.000006 + 0.000005 days. We characterize each transiting companion using a combination of ground-based and space-based photometry, speckle imaging, and high-precision velocimetry from the Habitable-zone Planet Finder and the NEID spectrographs. With the discovery of these two systems, there are now nine M dwarfs known to host transiting hot Jupiters. Among this population, TOI-3714 b ( T eq = 750 ± 20 K and TSM = 98 ± 7) and TOI-3629 b ( T eq = 690 ± 20 K and TSM = 80 ± 9) are warm gas giants amenable to additional characterization with transmission spectroscopy to probe atmospheric chemistry and, for TOI-3714, obliquity measurements to probe formation scenarios.more » « less
-
ABSTRACT We report the discovery and validation of HD 21520 b, a transiting planet found with Transiting Exoplanet Survey Satellite and orbiting a bright G dwarf (V = 9.2, $T_{\rm eff} = 5871 \pm 62$ K, $R_{\star } = 1.04\pm 0.02\, {\rm R}_{\odot }$). HD 21520 b was originally alerted as a system (TOI-4320) consisting of two planet candidates with periods of 703.6 and 46.4 d. However, our analysis supports instead a single-planet system with an orbital period of $25.1292\pm 0.0001$ d and radius of $2.70 \pm 0.09\, {\rm R}_{{\oplus }}$. Three full transits in sectors 4, 30, and 31 match this period and have transit depths and durations in agreement with each other, as does a partial transit in sector 3. We also observe transits using CHEOPS and LCOGT. SOAR and Gemini high-resolution imaging do not indicate the presence of any nearby companions, and Minerva-Australis and CORALIE radial velocities rule out an on-target spectroscopic binary. Additionally, we use ESPRESSO radial velocities to obtain a tentative mass measurement of $7.9^{+3.2}_{-3.0}\, {\rm M}_{{\oplus }}$, with a 3$\sigma$ upper limit of 17.7 ${\rm M}_{{\oplus }}$. Due to the bright nature of its host and likely significant gas envelope of the planet, HD 21520b is a promising candidate for further mass measurements and for atmospheric characterization.
-
ABSTRACT A new generation of observatories is enabling detailed study of exoplanetary atmospheres and the diversity of alien climates, allowing us to seek evidence for extraterrestrial biological and geological processes. Now is therefore the time to identify the most unique planets to be characterized with these instruments. In this context, we report on the discovery and validation of TOI-715 b, a $R_{\rm b}=1.55\pm 0.06\rm R_{\oplus }$ planet orbiting its nearby (42 pc) M4 host (TOI-715/TIC 271971130) with a period $P_{\rm b} = 19.288004_{-0.000024}^{+0.000027}$ d. TOI-715 b was first identified by TESS and validated using ground-based photometry, high-resolution imaging and statistical validation. The planet’s orbital period combined with the stellar effective temperature $T_{\rm eff}=3075\pm 75~\rm K$ give this planet an installation $S_{\rm b} = 0.67_{-0.20}^{+0.15}~\rm S_\oplus$, placing it within the most conservative definitions of the habitable zone for rocky planets. TOI-715 b’s radius falls exactly between two measured locations of the M-dwarf radius valley; characterizing its mass and composition will help understand the true nature of the radius valley for low-mass stars. We demonstrate TOI-715 b is amenable for characterization using precise radial velocities and transmission spectroscopy. Additionally, we reveal a second candidate planet in the system, TIC 271971130.02, with a potential orbital period of $P_{02} = 25.60712_{-0.00036}^{+0.00031}$ d and a radius of $R_{02} = 1.066\pm 0.092\, \rm R_{\oplus }$, just inside the outer boundary of the habitable zone, and near a 4:3 orbital period commensurability. Should this second planet be confirmed, it would represent the smallest habitable zone planet discovered by TESS to date.
-
We studied the molecular gas properties of AzTEC/C159, a star-forming disk galaxy at $z=4.567$. We secured $^{12}$CO molecular line detections for the $J=2\to1$ and $J=5\to4$ transitions using the Karl G. Jansky VLA and the NOEMA interferometer. The broad (FWHM$\sim750\,{\rm km\,s}^{-1}$) and tentative double-peaked profiles of both $^{12}$CO lines are consistent with an extended molecular gas reservoir, which is distributed in a rotating disk as previously revealed from [CII] 158$\mu$m line observations. Based on the $^{12}$CO(2$\to$1) emission line we derived $L'_{\rm{CO}}=(3.4\pm0.6)\times10^{10}{\rm \,K\,km\,s}^{-1}{\rm \,pc}^{2}$, that yields a molecular gas mass of $M_{\rm H_2 }(\alpha_{\rm CO}/4.3)=(1.5\pm0.3)\times 10^{11}{\rm M}_\odot$ and unveils a gas-rich system with $\mu_{\rm gas}(\alpha_{\rm CO}/4.3)\equiv M_{\rm H_2}/M_\star=3.3\pm0.7$. The extreme star formation efficiency (SFE) of AzTEC/C159, parametrized by the ratio $L_{\rm{IR}}/L'_{\rm{CO}}=(216\pm80)\, {\rm L}_{\odot}{\rm \,(K\,km\,s}^{-1}{\rm \,pc}^{2})^{-1}$, is comparable to merger-driven starbursts such as local ultra-luminous infrared galaxies (ULIRGs) and SMGs. Likewise, the $^{12}$CO(5$\to$4)/CO(2$\to$1) line brightness temperature ratio of $r_{52}= 0.55\pm 0.15$ is consistent with high excitation conditions, similar to that observed in SMGs. We constrained the value for the $L'_{\text{CO}}-{\rm H}_2$ mass conversion factor in AzTEC/C159, i.e. $\alpha_{\text{CO}}=3.9^{+2.7}_{-1.3}{\rm \,M}_{\odot}{\rm \,K}^{-1}{\rm \,km}^{-1}{\rm \,s\,pc}^{-2}$, that is consistent with a self-gravitating molecular gas distribution as observed in local star-forming disk galaxies. Cold gas streams from cosmological filaments might be fueling a gravitationally unstable gas-rich disk in AzTEC/C159, which breaks into giant clumps forming stars as efficiently as in merger-driven systems and generate high gas excitation.more » « less