skip to main content

Search for: All records

Award ID contains: 2009528

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Measured spectral shifts due to intrinsic stellar variability (e.g., pulsations, granulation) and activity (e.g., spots, plages) are the largest source of error for extreme-precision radial-velocity (EPRV) exoplanet detection. Several methods are designed to disentangle stellar signals from true center-of-mass shifts due to planets. The Extreme-precision Spectrograph (EXPRES) Stellar Signals Project (ESSP) presents a self-consistent comparison of 22 different methods tested on the same extreme-precision spectroscopic data from EXPRES. Methods derived new activity indicators, constructed models for mapping an indicator to the needed radial-velocity (RV) correction, or separated out shape- and shift-driven RV components. Since no ground truth is knownmore »when using real data, relative method performance is assessed using the total and nightly scatter of returned RVs and agreement between the results of different methods. Nearly all submitted methods return a lower RV rms than classic linear decorrelation, but no method is yet consistently reducing the RV rms to sub-meter-per-second levels. There is a concerning lack of agreement between the RVs returned by different methods. These results suggest that continued progress in this field necessitates increased interpretability of methods, high-cadence data to capture stellar signals at all timescales, and continued tests like the ESSP using consistent data sets with more advanced metrics for method performance. Future comparisons should make use of various well-characterized data sets—such as solar data or data with known injected planetary and/or stellar signals—to better understand method performance and whether planetary signals are preserved.« less
    Free, publicly-accessible full text available March 15, 2023
  2. Abstract The distortions of absorption line profiles caused by photospheric brightness variations on the surfaces of cool, main-sequence stars can mimic or overwhelm radial velocity (RV) shifts due to the presence of exoplanets. The latest generation of precision RV spectrographs aims to detect velocity amplitudes ≲ 10 cm s −1 , but requires mitigation of stellar signals. Statistical techniques are being developed to differentiate between Keplerian and activity-related velocity perturbations. Two important challenges, however, are the interpretability of the stellar activity component as RV models become more sophisticated, and ensuring the lowest-amplitude Keplerian signatures are not inadvertently accounted for inmore »flexible models of stellar activity. For the K2V exoplanet host ϵ Eridani, we separately used ground-based photometry to constrain Gaussian processes for modeling RVs and TESS photometry with a light-curve inversion algorithm to reconstruct the stellar surface. From the reconstructions of TESS photometry, we produced an activity model that reduced the rms scatter in RVs obtained with EXPRES from 4.72 to 1.98 m s −1 . We present a pilot study using the CHARA Array and MIRC-X beam combiner to directly image the starspots seen in the TESS photometry. With the limited phase coverage, our spot detections are marginal with current data but a future dedicated observing campaign should allow for imaging, as well as allow the stellar inclination and orientation with respect to the debris disk to be definitively determined. This work shows that stellar surface maps obtained with high-cadence, time-series photometric and interferometric data can provide the constraints needed to accurately reduce RV scatter.« less
    Free, publicly-accessible full text available December 16, 2022
  3. Free, publicly-accessible full text available October 27, 2022
  4. We present the discovery of TOI-1518b -- an ultra-hot Jupiter orbiting a bright star $V = 8.95$. The transiting planet is confirmed using high-resolution optical transmission spectra from EXPRES. It is inflated, with $R_p = 1.875\pm0.053\,R_{\rm J}$, and exhibits several interesting properties, including a misaligned orbit (${240.34^{+0.93}_{-0.98}}$ degrees) and nearly grazing transit ($b =0.9036^{+0.0061}_{-0.0053}$). The planet orbits a fast-rotating F0 host star ($T_{\mathrm{eff}} \simeq 7300$ K) in 1.9 days and experiences intense irradiation. Notably, the TESS data show a clear secondary eclipse with a depth of $364\pm28$ ppm and a significant phase curve signal, from which we obtain a relativemore »day-night planetary flux difference of roughly 320 ppm and a 5.2$\sigma$ detection of ellipsoidal distortion on the host star. Prompted by recent detections of atomic and ionized species in ultra-hot Jupiter atmospheres, we conduct an atmospheric cross-correlation analysis. We detect neutral iron (${5.2\sigma}$), at $K_p = 157^{+68}_{-44}$ km s$^{-1}$ and $V_{\rm sys} = -16^{+2}_{-4}$ km s$^{-1}$, adding another object to the small sample of highly irradiated gas-giant planets with Fe detections in transmission. Detections so far favor particularly inflated gas giants with radii $rsim 1.78\,R_{\rm J}$; although this may be due to observational bias. With an equilibrium temperature of $T_{\rm eq}=2492\pm38$ K and a measured dayside brightness temperature of $3237\pm59$ K (assuming zero geometric albedo), TOI-1518b is a promising candidate for future emission spectroscopy to probe for a thermal inversion.« less