skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Stochastic Optimization of Large-Scale Patient Evacuation Before Hurricanes
The total cost for weather-related disasters in the US increases over time, and hurricanes usually create the most damage. One of the challenges, which is present in almost every major hurricane event, is the patient evacuation mission. We propose a comprehensive modeling and methodological framework for a large-scale patient evacuation problem when an area is faced with a forecasted disaster such as a hurricane. In this work, we integrate a hurricane scenario generation scheme using publicly available surge level forecasting software and a scenario-based stochastic integer program to make decisions on patient movements, staging area locations and positioning of emergency medical vehicles with an objective of minimizing the total expected cost of evacuation and the setup cost of staging areas. The hurricane scenario generation scheme incorporates the uncertainties in the hurricane intensity, direction, forward speed and tide level. To demonstrate the modeling approach, we apply real-world data from the Southeast Texas region in our experiments. We highlight the importance of operation time limits, the number of available resources and an accurate forecast on forthcoming hurricanes in determining the locations of staging areas and patient evacuation decisions.  more » « less
Award ID(s):
1940308
PAR ID:
10291201
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IISE Annual Conference
Page Range / eLocation ID:
1682-1687
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We propose a rigorous modeling and methodological effort that integrates statistical implementation of hydrology models in predicting inland and coastal flood scenarios due to hurricanes and a scenario-based stochastic integer programming model which suggests resource and staging area decisions in the first stage and the evacuation decisions in the second stage. This novel study combines physics-based flood prediction models and stochastic optimization for large- scale multi-facility coordination of hospital and nursing home evacuations before impending hurricanes. The optimization model considers scenario-dependent evacuation demand, transport vehicles with varying capacities, and both critical and non-critical patients. Utilizing Hurricane Harvey of 2017 as a case study and actual healthcare facility locations in southeast Texas, we explore various evacuation policies, demonstrating the impact of routing strategies, staging area decisions, flood thresholds, and receiving facility capacities on evacuation outcomes. One of the findings is that choosing staging area(s) and deploying evacuation vehicles optimally considering the uncertainty of the hurricane’s path at the time of decision making could have significant effect on the total cost of the operation and evacuation time experienced by the evacuees. We also show the non-negligible value of the scenario-based staging and routing solution conservatively calculated in relation to a single scenario solution using the concept of value of stochastic solution. 
    more » « less
  2. null (Ed.)
    This paper proposes a two-stage stochastic mixed integer programming framework for patient evacuation. While minimizing the expected total cost of patient evacuation operations, the model determines the location of staging areas and the number of emergency medical service (EMS) vehicles to mobilize in the first stage, and the EMS vehicle routing assignments in the second stage. A real-world data from Southeast Texas region is used to demonstrate our modeling approach. To provide a more pragmatic solution to the patient evacuation problem, we attempt to create comprehensive hurricane instances by integrating the publicly available state-of-art hydrology models for surge, Sea, Lake Ocean and Overland Surge for Hurricanes (SLOSH), and for streamflow, National Water Model (NWM), prediction. The surge product captures potential flooding in coastal region while the streamflow product predicts inland flooding. The results exhibit the importance of the integrated approach in patient evacuation planning, provide guidance on flood mapping and prove the potential benefit of comprehensive approach in scenario generation. 
    more » « less
  3. null (Ed.)
    Hurricanes often induce catastrophic flooding due to both storm surge near the coast, and pluvial and fluvial flooding further inland. In an effort to contribute to uncertainty quantification of impending flood events, we propose a probabilistic scenario generation scheme for hurricane flooding using state-of-art hydrological models to forecast both inland and coastal flooding. The hurricane scenario generation scheme incorporates locational uncertainty in hurricane landfall locations. For an impending hurricane, we develop a method to generate multiple scenarios by the predicated landfall location and adjusting corresponding meteorological characteristics such as precipitation. By combining inland and coastal flooding models, we seek to provide a comprehensive understanding of potential flood scenarios for an impending hurricane. To demonstrate the modeling approach, we use real-world data from the Southeast Texas region in our case study. 
    more » « less
  4. Abstract This study investigates how different risk predictors influenced households’ evacuation decisions during a dual‐threat event (Hurricane Laura and COVID‐19 pandemic). The Protective Action Decision Model (PADM) literature indicates that perceived threat variables are the most influential variables that drive evacuation decisions. This study applies the PADM to investigate a dual‐threat disaster that has conflicting protective action recommendations. Given the novelty, scale, span, impact, and messaging around COVID‐19, it is crucial to see how hurricanes along the Gulf Coast—a hazard addressed seasonally by residents with mostly consistent protective action messaging—produce different reactions in residents in this pandemic context. Household survey data were collected during early 2021 using a disproportionate stratified sampling procedure to include households located in mandatory and voluntary evacuation areas across the coastal counties in Texas and parishes in Louisiana that were affected by Hurricane Laura. Structural equation modeling was used to identify the relationships between perceived threats and evacuation decisions. The findings suggest affective risk perceptions strongly affected cognitive risk perceptions (CRPs). Notably, hurricane and COVID‐19 CRPs are significant predictors of hurricane evacuation decisions in different ways. Hurricane CRPs encourage evacuation, but COVID‐19 CRPs hinder evacuation decisions. 
    more » « less
  5. Hurricanes cause devastating amounts of damage to structures and infrastructure. It harms especially those coastal residents along its track. Over the last couple of years, evacuation planning for populated coastal regions has been challenging and time-consuming due to the uncertainty of the hurricane’s track. As such, with a focus on Northwest Florida, this research aims to focus on the development of evacuation scenarios for coastal communities that combines hurricane inundation and strong wind forecast and evacuation modeling. The proposed approach integrates storm surge simulation models (ADCIRC and SWAN modeling) and traffic evacuation models (Cube and TIME) by using hurricane forecasting datasets to explore the designation of evacuation zones and the calculation of evacuation clearance times in different counties. This approach was applied to three distinct scenarios with a focus on possible populated coastal cities that Hurricane Michael would have hit in 2018. Selected cities are Pensacola, Destin, and Panama City. This type of approach has the potential to help agencies make more informed decisions on evacuations using the accuracy and timeliness of forecasts and provide safer evacuations in coastal areas by avoiding the traffic jams on evacuation routes. 
    more » « less