Coupled electronic oscillators have recently been explored as a compact, integrated circuit- and room temperature operation-compatible hardware platform to design Ising machines. However, such implementations presently require the injection of an externally generated second-harmonic signal to impose the phase bipartition among the oscillators. In this work, we experimentally demonstrate a new electronic autaptic oscillator (EAO) that uses engineered feedback to eliminate the need for the generation and injection of the external second harmonic signal to minimize the Ising Hamiltonian. Unlike conventional relaxation oscillators that typically decay with a single time constant, the feedback in the EAO is engineered to generate two decay time constants which effectively helps generate the second harmonic signal internally. Using this oscillator design, we show experimentally, that a system of capacitively coupled EAOs exhibits the desired bipartition in the oscillator phases without the need for any external second harmonic injection, and subsequently, demonstrate its application in solving the computationally hard Maximum Cut (MaxCut) problem. Our work not only establishes a new oscillator design aligned to the needs of the oscillator Ising machine but also advances the efforts to creating application specific analog computing platforms.
- Award ID(s):
- 1914730
- NSF-PAR ID:
- 10291288
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 11
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Synchronization of electrical oscillators is a crucial step toward practical implementation of oscillator-based and bio-inspired computing. Here, we report the emergence of an unusual stochastic pattern in coupled spiking Mott nanodevices. Although a moderate capacitive coupling results in a deterministic alternating spiking, increasing the coupling strength leads counterintuitively to stochastic disruptions of the alternating spiking sequence. The disruptions of the deterministic spiking sequence are a direct consequence of the small intrinsic stochasticity in electrical triggering of the insulator–metal transition. Although the stochasticity is subtle in individual nanodevices, it becomes dramatically enhanced just in a single pair of coupled oscillators and, thus, dominates the synchronization. This is different from the stochasticity and multimodal coupling, appearing due to collective effects in large oscillator networks. The stochastic spiking pattern in Mott nanodevices results in a discrete inter-spike interval distribution resembling those in biological neurons. Our results advance the understanding of the emergent synchronization properties in spiking oscillators and provide a platform for hardware-level implementation of probabilistic computing and biologically plausible electronic devices.
-
This paper explores the potential benefits of combining the use of injection-locking techniques with GPS signals as a common clock source when applied to a low-cost Software Defined Radio (SDR) to improve the accuracy of coherent multiple receivers. Coherent systems impose severe requirements on the frequency stability of the signal source at the receiver. In this work, injection-locked oscillators are used as local clock receivers, which inherently synchronizes the SDR analog digital converter (ADCs) sampling times and keeps the local oscillator locked on to the GPS stimulus periodic signal. This paper illustrates the hardware modifications needed for to the injection locking oscillators of eight RTL-SDR radios and the theory behind it, and experimentally measures the degree of coherency in the frequency, phase and time synchronization to verify the proposed method. The coherency demonstrated in the results prove the feasibility of using beamforming, multiple input multiple output (MIMO) and RF transmitter geo-localization.more » « less
-
Energy localization, which are spatially confined response patterns, have been observed in turbomachinery applications, micro-electromechanical systems, and atomic crystals. While confined energy can reduce a device’s life-span, in sensing and energy harvesting applications, it can be beneficial to steer a system’s response into a localized mode. Building on earlier studies, in this article, the authors extend the research on localization by considering an array of coupled Duffing oscillators arranged in a circle. The system is composed of multiple nonlinear oscillators each connected to two neighboring oscillators via springs. Due to the periodic boundary conditions waves can propagate through the boundaries. These oscillators are hardening in most of the considered cases, and softening in the others. In the studied parameter range, the system is characterized by multi-stable behavior and a localized mode as well as a unison-low-amplitude motion coexist. The possibility that white noise can drive the system response from the localized mode to the low amplitude mode and thus suppresses energy localization is investigated. For different noise levels, the duration needed to stop energy localization as well as the probability to suppress localization within a certain time is numerically studied. In addition, the effects of linear coupling and nonlinear coupling between the oscillators on the strength of localization and the minimum noise addition needed to suppress energy localization are examined in depth. Moreover, modeling of large array dynamics with smaller subsystems is explored and dynamics with non-Gaussian noise is also considered.more » « less
-
Nonlinear dynamical systems such as coupled oscillators are being actively investigated as Ising machines for solving computationally hard problems in combinatorial optimization. Prior works have established the equivalence between the global minima of the cost function describing the coupled oscillator system and the ground state of the Ising Hamiltonian. However, the properties of the oscillator Ising machine (OIM) from a nonlinear control viewpoint, such as the stability of the OIM solutions, remain unexplored. Therefore, in this work, using nonlinear control-theoretic analysis, we (i) identify the conditions required to ensure the functionality of the coupled oscillators as an Ising machine, (ii) show that all globally optimal phase configurations may not always be stable, resulting in some configurations being more favored over others and, thus, creating a biased OIM, and (iii) elucidate the impact of the stability of locally optimal phase configurations on the quality of the solution computed by the system. Our work, fostered through the unique convergence between nonlinear control theory and analog systems for computing, provides a new toolbox for the design and implementation of dynamical system-based computing platforms.