skip to main content


Title: Dynamics of circular oscillator arrays subjected to noise
Energy localization, which are spatially confined response patterns, have been observed in turbomachinery applications, micro-electromechanical systems, and atomic crystals. While confined energy can reduce a device’s life-span, in sensing and energy harvesting applications, it can be beneficial to steer a system’s response into a localized mode. Building on earlier studies, in this article, the authors extend the research on localization by considering an array of coupled Duffing oscillators arranged in a circle. The system is composed of multiple nonlinear oscillators each connected to two neighboring oscillators via springs. Due to the periodic boundary conditions waves can propagate through the boundaries. These oscillators are hardening in most of the considered cases, and softening in the others. In the studied parameter range, the system is characterized by multi-stable behavior and a localized mode as well as a unison-low-amplitude motion coexist. The possibility that white noise can drive the system response from the localized mode to the low amplitude mode and thus suppresses energy localization is investigated. For different noise levels, the duration needed to stop energy localization as well as the probability to suppress localization within a certain time is numerically studied. In addition, the effects of linear coupling and nonlinear coupling between the oscillators on the strength of localization and the minimum noise addition needed to suppress energy localization are examined in depth. Moreover, modeling of large array dynamics with smaller subsystems is explored and dynamics with non-Gaussian noise is also considered.  more » « less
Award ID(s):
1760366
NSF-PAR ID:
10332552
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Nonlinear dynamics
Volume:
108
ISSN:
1573-269X
Page Range / eLocation ID:
1-14
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this work, the authors explore the influence of noise on the dynamics of coupled nonlinear oscillators. Numerical studies based on the Euler–Maruyama scheme and experimental studies with finite duration noise are undertaken to examine how the response can be moved from one response state to another by using noise addition to a harmonically forced system. In particular, jumps from a high amplitude state of each oscillator to a low amplitude state of each oscillator and the converse are demonstrated along with noise-influenced localizations. These events are found to occur in a region of multi-stability for the system, and the corresponding noise levels are reported. A method for recognizing how much noise is required to induce a change the system dynamics is developed by using the response basins of attraction. The findings of this work have implications for weakly coupled, nonlinear oscillator arrays and the manner in which noise can be used to influence energy localization and system dynamics in these systems. 
    more » « less
  2. The chief objective of this paper is to explore energy transfer mechanism between the sub-systems that are coupled by a nonlinear elastic path. In the proposed model (via a minimal order, two degree of freedom system), both sub-systems are defined as damped harmonic oscillators with linear springs and dampers. The first sub-system is attached to the ground on one side but connected to the second sub-system on the other side. In addition, linear elastic and dissipative characteristics of both oscillators are assumed to be identical, and a harmonic force excitation is applied only on the mass element of second oscillator. The nonlinear spring (placed in between the two sub-systems) is assumed to exhibit cubic, hardening type nonlinearity. First, the governing equations of the two degree of freedom system with a nonlinear elastic path are obtained. Second, the nonlinear differential equations are solved with a semi-analytical (multi-term harmonic balance) method, and nonlinear frequency responses of the system are calculated for different path coupling cases. As such, the nonlinear path stiffness is gradually increased so that the stiffness ratio of nonlinear element to the linear element is 0.01, 0.05, 0.1, 0.5 and 1.0 while the absolute value of linear spring stiffness is kept intact. In all solutions, it is observed that the frequency response curves at the vicinity of resonant frequencies bend towards higher frequencies as expected due to the hardening effect. However, at moderate or higher levels of path coupling (say 0.1, 0.5 and 1.0), additional branches emerge in the frequency response curves but only at the first resonant frequency. This is due to higher displacement amplitudes at the first resonant frequency as compared to the second one. Even though the oscillators move in-phase around the first natural frequency, high amplitudes increase the contribution of the stored potential energy in the nonlinear spring to the total mechanical energy. The out-of-phase motion around the second natural frequency cannot significantly contribute due to very low motion amplitudes. Finally, the governing equations are numerically solved for the same levels of nonlinearity, and the motion responses of both sub-systems are calculated. Both in-phase and out-of-phase motion responses are successfully shown in numerical solutions, and phase portraits of the system are generated in order to illustrate its nonlinear dynamics. In conclusion, a better understanding of the effect of nonlinear elastic path on two damped harmonic oscillators is gained. 
    more » « less
  3. Rayleigh–Taylor instability, RTI, occurs at the interface separating two fluids subjected to acceleration when the density gradient and the acceleration are in opposite directions. Previous scientific research primarily considered RTI under the incompressible assumption, which may not be valid in many high-energy-density engineering applications and astrophysical phenomena. In this study, the compressibility effects of the background isothermal stratification strength on multi-mode two-dimensional RTI are explored using fully compressible multi-species direct numerical simulations. Cases under three different isothermal Mach numbers – Ma=0.15,  0.3,  and  0.45 – are investigated to explore weakly, moderately, and strongly stratified compressible RTI, respectively, at an Atwood number of 0.04. Unlike incompressible RTI, an increase in the flow compressibility through the strength of the background stratification can suppress the RTI growth and can lead to a termination of the RTI mixing layer growth with a highly molecularly mixed state. Our findings suggest that even at the chosen relatively low Atwood number, the variable-density effects can be significantly enhanced due to an increase in the background stratification for the compressible RTI as different spatial profiles become noticeably asymmetric across the mixing layer for the strongly stratified case. In addition, this study compares the chaotic behavior of the cases by studying the transport of the turbulent kinetic energy as well as the vortex dynamics. The Reynolds number dependence of the results is also examined with three different Reynolds numbers, and the findings for the large-scale mixing and flow quantities of interest are shown to be universal in the range of the Reynolds numbers studied.

     
    more » « less
  4. In this work we present a systematic review of novel and interesting behaviour we have observed in a simplified model of a MEMS oscillator. The model is third order and nonlinear, and we expressit as a single ODE for a displacement variable. We find that a single oscillator exhibits limitcycles whose amplitude is well approximated by perturbation methods. Two coupled identicaloscillators have in-phase and out-of-phase modes as well as more complicated motions.Bothof the simple modes are stable in some regions of the parameter space while the bifurcationstructure is quite complex in other regions. This structure is symmetric; the symmetry is brokenby the introduction of detuning between the two oscillators. Numerical integration of the fullsystem is used to check all bifurcation computations. Each individual oscillator is based on a MEMS structure which moves within a laser-driven interference pattern. As the structure vibrates, it changes the interference gap, causing the quantity of absorbed light to change, producing a feedback loop between the motion and the absorbed light and resulting in a limit cycle oscillation. A simplified model of this MEMS oscillator, omitting parametric feedback and structural damping, is investigated using Lindstedt's perturbation method. Conditions are derived on the parameters of the model for a limit cycle to exist. The original model of the MEMS oscillator consists of two equations: a second order ODE which describes the physical motion of a microbeam, and a first order ODE which describes the heat conduction due to the laser. Starting with these equations, we derive a single governing ODE which is of third order and which leads to the definition of a linear operator called the MEMS operator. The addition of nonlinear terms in the model is shown to produce limit cycle behavior. The differential equations of motion of the system of two coupled oscillators are numerically integrated for varying values of the coupling parameter. It is shown that the in-phase mode loses stability as the coupling parameter is reduced below a certain value, and is replaced by two new periodic motions which are born in a pitchfork bifurcation. Then as this parameter is further reduced, the form of the bifurcating periodic motions grows more complex, with yet additional bifurcations occurring. This sequence of bifurcations leads to a situation in which the only periodic motion is a stable out-of-phase mode. The complexity of the resulting sequence of bifurcations is illustrated through a series of diagrams based on numerical integration. 
    more » « less
  5. The source angle localization problem is studied based on scattering of elastic waves in two dimensions by a phononic array and the exceptional points of its band structure. Exceptional points are complex singularities of a parameterized eigen-spectrum, where two modes coalesce with identical mode shapes. These special points mark the qualitative transitions in the system behavior and have been proposed for sensing applications. The equi-frequency band structures are analyzed with focus on the angle-dependent modal behaviors. At the exceptional points and critical angles, the eigen-modes switch their energy characteristics and symmetry, leading to enhanced sensitivity as the scattering response of the medium is inherently angle-dependent. An artificial neural network is trained with randomly weighted and superposed eigen-modes to achieve deep learning of the angle-dependent dynamics. The trained algorithm can accurately classify the incident angle of an unknown scattering signal, with minimal sidelobe levels and suppressed main lobewidth. The neural network approach shows superior localization performance compared with standard delay-and-sum technique. The proposed application of the phononic array highlights the physical relevance of band topology and eigen-modes to a technological application, adds extra strength to the existing localization methods, and can be easily enhanced with the fast-growing data-driven techniques. 
    more » « less