skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Making Apps: An Approach to Recruiting Youth to Computer Science
In response to the need to broaden participation in computer science, we designed a summer camp to teach middle-school-aged youth to code apps with MIT App Inventor. For the past four summers, we have observed significant gains in youth's interest and self-efficacy in computer science, after attending our camps. The majority of these youth, however, were youth from our local community. To provide equal access across the state and secure more diversity, we were interested in examining the effect of the camp on a broader population of youth. Thus, we partnered with an outreach program to reach and test our camps on youth from low-income high-poverty areas in the Intermountain West. During the summer of 2019, we conducted two sets of camps: locally advertised app camps that attracted youth from our local community and a second set of camps as part of a larger outreach program for youth from low-income high-poverty areas. The camps for both populations followed the same design of personnel, camp activities, structure, and curriculum. However, the background of the participants was slightly different. Using survey data, we found that the local sample experienced significant gains in both self-efficacy and interest, while the outreach group only reported significant gains in self-efficacy after attending the camp. However, the qualitative data collected from the outreach participants indicated that they had a positive experience both with the camp and their mentors. In this article, we discuss the camp design and findings in relation to strategies for broadening participation in Computer Science education.  more » « less
Award ID(s):
1614849
PAR ID:
10291378
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ACM Transactions on Computing Education
Volume:
20
Issue:
4
ISSN:
1946-6226
Page Range / eLocation ID:
1 to 23
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Our work is situated in research on Computer Science (CS) learning in informal learning environments and literature on the factors that influence girls to enter CS. In this article, we outline design choices around the creation of a summer programming camp for middle school youth. In addition, we describe a near-peer mentoring model we used that was influenced by Bandura's self-efficacy theory. The purpose of this article, apart from promoting transparency of program design, was to evaluate the effectiveness of our camp design in terms of increasing youths’ interest, self-efficacy beliefs, and perceptions of parental support. We found significant gains for all three of these concepts. Additionally, we make connections between our design choices (e.g., videos, peer support, mentor support) and the affective gains by thematically analyzing interview data concerning the outcomes found in our camps. 
    more » « less
  2. Women and racially and ethnically minoritized populations are underrepresented in science, technology, engineering, and mathematics (STEM). Out-of-school time programs like summer camps can provide positive science experiences that may increase self-efficacy and awareness of STEM opportunities. Such programs often use the same high-impact practices used in K–12 classrooms including relating concepts to real-world examples, engaging students as active participants in inquiry-driven projects, and facilitating learning in a cooperative context. They additionally provide opportunities for engaging in STEM without fear of failure, offer a community of mentors, and allow families to become more involved. We designed a summer camp for middle schoolers who identified as girls, low-income, and as a minoritized race or ethnicity. We describe the design of the camp as well as the results from a simple pre- and post-camp questionnaire that examined each camper’s relationship to science, scientific self-efficacy, and interest in having a job in STEM. We found an increase in self-efficacy in camp participants, which is important because high scientific self-efficacy predicts student performance and persistence in STEM, especially for girls. We did not detect an increase in interest in pursuing a STEM job, likely because of already high values for this question on the pre-camp survey. We add to the growing body of work recognizing the potential of out-of-school time STEM programs to increase scientific self-efficacy for girls and racially minoritized students. Tweet: Summer camp for minoritized middle-school girls increases scientific self-efficacy, a characteristic that may be important for removing barriers to participation in STEM. 
    more » « less
  3. Outreach summer camps, particularly those focused on increasing the number of women in engineering, are commonplace. Some camps take the approach of a broad survey of engineering as a whole, while others focus on one specific discipline. Within the discipline-specific camps, there is a high degree of variability in curriculum and structure. This is apparent when considering if and how engineering design is built into the camp structure. While many studies have investigated the impact of outreach camps on engineering self-confidence among participants, few studies have sought to understand how the camp curriculum as a whole can influence these outcomes. To begin to understand the connection between outreach camp curriculum and engineering self-confidence among participants, we studied outreach camps targeted to high school women that varied in the incorporation of design into their structure. We chose to study three camps: (1) a design-focused camp, (2) a design-incorporated camp (run by the authors), and a (3) design-absent camp. All three camps were at the same university but based in different engineering disciplines. Results from pre-post survey Wilcoxon Signed Rank tests showed that design-focused and design-incorporated camps were able to improve students’ perspective of what engineering is (p <.01 and p = .02), while the design-absent camp had no change. The design-incorporated camp increased the participants’ desire to be an engineer (p = .02) while the design-absent camp decreased the participants’ desire to be an engineer (p = .02) and the design-focused camp had no effect. The design-absent camp also decreased the participants’ overall interest in engineering (p = .02). Additionally, both the design-incorporated and design-focused camps increased the participants’ confidence in conducting engineering design (p <.01 and p <.01), but only the design-incorporated camp had consistent improvements throughout the entire design cycle. Motivated by these results, we intend in future studies to more systematically probe the potential of different outreach curricula and structures to positively influence engineering perceptions. 
    more » « less
  4. The core component of this study was a five-week summer camp that provided Arduino and robotics workshops and group activities to girls in grades 6-11. All activities were structured to ensure that learning took place in a constructivist environment. The camp was designed as a program to increase girls’, especially minorities’ participation in computer science and engineering. Key elements of camp participants’ STEM interest, self-efficacy, and contextual factors were measured both before and after the camp. With the collection and analyses of the survey data, our present study is to examine how constructivist learning environment may impact adolescent girls’ STEM learning and interests. 
    more » « less
  5. Responsive to broadening participation challenges, Mississippi State University (MSU) established the Bulldog Bytes Outreach Program in 2013 with a residential summer camp for middle school girls funded through the National Center for Women in Information Technology (NCWIT). Since then the program has grown to provide co-curricular activities to K12 students throughout the state. Following a pilot offering of an elementary camp in 2016, the Bulldog Bytes program delivered two of these camps in small towns during 2017, supporting a strategy of engaging under-resourced students with computing in their home communities. This paper will detail our project-based approach to learning and share experiences from the elementary camps. 
    more » « less