In this short note we construct an embedding of the planar algebra for $$\overline{\Rep(U_q(\mathfrak{sl}_3))}$$ at $$q = e^{2\pi i \frac{1}{24}}$$ into the graph planar algebra of di Francesco and Zuber's candidate graph $$\mathcal{E}_4^{12}$$. Via the graph planar algebra embedding theorem we thus construct a rank 11 module category over $$\overline{\Rep(U_q(\mathfrak{sl}_3))}$$ whose graph for action by the vector representation is $$\mathcal{E}_4^{12}$$. This fills a small gap in the literature on the construction of $$\overline{\Rep(U_q(\mathfrak{sl}_3))}$$ module categories. As a consequence of our construction, we obtain the principal graphs of subfactors constructed abstractly by Evans and Pugh. 
                        more » 
                        « less   
                    
                            
                            Type 𝐼𝐼 quantum subgroups of 𝔰𝔩_{𝔑}. ℑ: Symmetries of local modules
                        
                    
    
            This paper is the first of a pair that aims to classify a large number of the type I I II quantum subgroups of the categories C ( s l r + 1 , k ) \mathcal {C}(\mathfrak {sl}_{r+1}, k) . In this work we classify the braided auto-equivalences of the categories of local modules for all known type I I quantum subgroups of C ( s l r + 1 , k ) \mathcal {C}(\mathfrak {sl}_{r+1}, k) . We find that the symmetries are all non-exceptional except for four cases (up to level-rank duality). These exceptional cases are the orbifolds C ( s l 2 , 16 ) Rep  ( Z 2 ) 0 \mathcal {C}(\mathfrak {sl}_{2}, 16)^0_{\operatorname {Rep}(\mathbb {Z}_{2})} , C ( s l 3 , 9 ) Rep  ( Z 3 ) 0 \mathcal {C}(\mathfrak {sl}_{3}, 9)^0_{\operatorname {Rep}(\mathbb {Z}_{3})} , C ( s l 4 , 8 ) Rep  ( Z 4 ) 0 \mathcal {C}(\mathfrak {sl}_{4}, 8)^0_{\operatorname {Rep}(\mathbb {Z}_{4})} , and C ( s l 5 , 5 ) Rep  ( Z 5 ) 0 \mathcal {C}(\mathfrak {sl}_{5}, 5)^0_{\operatorname {Rep}(\mathbb {Z}_{5})} . We develop several technical tools in this work. We give a skein theoretic description of the orbifold quantum subgroups of C ( s l r + 1 , k ) \mathcal {C}(\mathfrak {sl}_{r+1}, k) . Our methods here are general, and the techniques developed will generalise to give skein theory for any orbifold of a braided tensor category. We also give a formulation of orthogonal level-rank duality in the type D D - D D case, which is used to construct one of the exceptionals. We uncover an unexpected connection between quadratic categories and exceptional braided auto-equivalences of the orbifolds. We use this connection to construct two of the four exceptionals. In the sequel to this paper we will use the classified braided auto-equivalences to construct the corresponding type I I II quantum subgroups of the categories C ( s l r + 1 , k ) \mathcal {C}(\mathfrak {sl}_{r+1}, k) . This will essentially finish the type I I II classification for s l n \mathfrak {sl}_n modulo type I I classification. When paired with Gannon’s type I I classification for r ≤ 6 r\leq 6 , our results will complete the type I I II classification for these same ranks. This paper includes an appendix by Terry Gannon, which provides useful results on the dimensions of objects in the categories C ( s l r + 1 , k ) \mathcal {C}(\mathfrak {sl}_{r+1}, k) . 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2245935
- PAR ID:
- 10423839
- Date Published:
- Journal Name:
- Communications of the American Mathematical Society
- Volume:
- 3
- Issue:
- 3
- ISSN:
- 2692-3688
- Page Range / eLocation ID:
- 112 to 165
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            We introduce the notions of symmetric and symmetrizable representations of . The linear representations of arising from modular tensor categories are symmetric and have congruence kernel. Conversely, one may also reconstruct modular data from finite-dimensional symmetric, congruence representations of . By investigating a -symmetry of some Weil representations at prime power levels, we prove that all finite-dimensional congruence representations of are symmetrizable. We also provide examples of unsymmetrizable noncongruence representations of that are subrepresentations of a symmetric one.more » « less
- 
            We introduce a topological intersection number for an ordered pair of -webs on a decorated surface. Using this intersection pairing between reduced -webs and a collection of -webs associated with the Fock–Goncharov cluster coordinates, we provide a natural combinatorial interpretation of the bijection from the set of reduced -webs to the tropical set , as established by Douglas and Sun in [Forum Math. Sigma 12 (2024), p. e5, 55]. We provide a new proof of the flip equivariance of the above bijection, which is crucial for proving the Fock–Goncharov duality conjecture of higher Teichmüller spaces for .more » « less
- 
            Suppose\operatorname{SL}_{2}(\mathbb{F}_{p})\times \operatorname{SL}_{2}(\mathbb{F}_{p})is generated by a symmetric setSof cardinalitynwherepis a prime number. Suppose the Cheeger constants of the Cayley graphs of\operatorname{SL}_{2}(\mathbb{F}_{p})with respect to\pi_{L}(S)and\pi_{R}(S)are at leastc_{0}, where\pi_{L}and\pi_{R}are the projections to the left and the right components of\operatorname{SL}_{2}(\mathbb{F}_{p})\times \operatorname{SL}_{2}(\mathbb{F}_{p}), respectively. Then the Cheeger constant of the Cayley graph of\operatorname{SL}_{2}(\mathbb{F}_{p})\times \operatorname{SL}_{2}(\mathbb{F}_{p})with respect toSis at leastcwherecis a positive number which only depends onnandc_{0}. This gives an affirmative answer to a question of Lindenstrauss and Varjú.more » « less
- 
            null (Ed.)Abstract For each integer $$t$$ a tensor category $$\mathcal{V}_t$$ is constructed, such that exact tensor functors $$\mathcal{V}_t\rightarrow \mathcal{C}$$ classify dualizable $$t$$-dimensional objects in $$\mathcal{C}$$ not annihilated by any Schur functor. This means that $$\mathcal{V}_t$$ is the “abelian envelope” of the Deligne category $$\mathcal{D}_t=\operatorname{Rep}(GL_t)$$. Any tensor functor $$\operatorname{Rep}(GL_t)\longrightarrow \mathcal{C}$$ is proved to factor either through $$\mathcal{V}_t$$ or through one of the classical categories $$\operatorname{Rep}(GL(m|n))$$ with $m-n=t$. The universal property of $$\mathcal{V}_t$$ implies that it is equivalent to the categories $$\operatorname{Rep}_{\mathcal{D}_{t_1}\otimes \mathcal{D}_{t_2}}(GL(X),\epsilon )$$, ($$t=t_1+t_2$$, $$t_1$$ not an integer) suggested by Deligne as candidates for the role of abelian envelope.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    