skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Computational Design and 3D Weaving of 2D-Printable Conformal Flexible Electronics using Harmonic Foliation Theory
This paper proposes a new way of designing and fabricating conformal flexible electronics on free-form surfaces, which can generate woven flexible electronics designs conforming to free-form 3D shapes with 2D printed electronic circuits. Utilizing our recently proposed foliation-based 3D weaving techniques, we can reap unprecedented advantages in conventional 2D electronic printing. The method is based on the foliation theory in differential geometry, which divides a surface into parallel leaves. Given a surface with circuit design, we first calculate a graph-value harmonic map and then create two sets of harmonic foliations perpendicular to each other. As the circuits are processed as the texture on the surface, they are separated and attached to each leaf. The warp and weft threads are then created and manually woven to reconstruct the surface and reconnect the circuits. Notably, The circuits are printed in 2D, which uniquely differentiates the proposed method from others. Compared with costly conformal 3D electronic printing methods requiring 5-axis CNC machines, our method is more reliable, more efficient, and economical. Moreover, the Harmonic foliation theory assures smoothness and orthogonality between every pair of woven yarns, which guarantees the precision of the flexible electronics woven on the surface. The proposed method provides an alternative solution to the design and physical realization of surface electronic textiles for various applications, including wearable electronics, sheet metal craft, architectural designs, and smart woven-composite parts with conformal sensors in the automotive and aerospace industry. The performance of the proposed method is depicted using two examples.  more » « less
Award ID(s):
1762287
PAR ID:
10291443
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the International Design Engineering Technical Conferences & Computers and Information in Engineering Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper presents a framework for computational generation and conformal fabrication of woven thin-shell structures with arbitrary topology based on the foliation theory which decomposes a surface into a group of parallel leaves. By solving graph-valued harmonic maps on the input surface, we construct two sets of harmonic foliations perpendicular to each other. The warp and weft threads are created afterward and then manually woven to reconstruct the surface. The proposed computational method guarantees the smoothness of the foliation and the orthogonality between each pair of leaves from different foliations. Moreover, it minimizes the number of singularities to theoretical lower bound and produces the tensor product structure as globally as possible. This method is ideal for the physical realization of woven surface structures on a variety of applications, including wearable electronics, sheet metal craft, architectural designs, and conformal woven composite parts in the automotive and aircraft industries. The performance of the proposed method is demonstrated through the computational generation and physical fabrication of several free-form thin-shell structures. 
    more » « less
  2. Abstract 3D printing of functional materials and devices is an emerging technology which may facilitate a higher degree of freedom in the fabrication of electronic devices in terms of material selection, 3D device form factor, morphology of target surfaces, and autonomy. This chapter discusses 3D printed electronics from the perspective of ink properties and device fabrication, including light-emitting diodes, tactile sensors and wireless powering. In combination with the progress in 3D structured light scanning, advances in computer vision, and commercial trends toward miniaturization, the prospect of autonomous, compact and portable 3D printers for electronic materials is discussed. Because the performance of 3D printed electronics is sensitively influenced by the homogeneity of printed layers, an understanding of fluid mechanics may enhance the quality of the printing and thus the performance of the resulting devices. Lastly, in order to create conformal contact between 3D printed electronics and the human body, an understanding of interfacial mechanics for 3D printed devices is suggested. 
    more » « less
  3. Three commercially-available conductive filaments were evaluated for 3D printing flexible circuits on paper. While all three filaments were printed successfully, the resulting conductive traces were found to have significantly different impedances when characterized by electrochemical impedance spectroscopy. Using a graphite-doped polylactic acid filament, the flexibility of paper-based conductive traces was evaluated, methods of integrating common electrical and electronic components with the conductive traces were demonstrated, and the resistive heating of the traces was characterized. The ability to 3D print conductive traces on paper using commercially available materials opens many opportunities for rapid prototyping of flexible electronics and for integrating electronic circuits with paper-based microfluidic devices. 
    more » « less
  4. Abstract Solution‐processable semiconducting 2D nanoplates and 1D nanorods are attractive building blocks for diverse technologies, including thermoelectrics, optoelectronics, and electronics. However, transforming colloidal nanoparticles into high‐performance and flexible devices remains a challenge. For example, flexible films prepared by solution‐processed semiconducting nanocrystals are typically plagued by poor thermoelectric and electrical transport properties. Here, a highly scalable 3D conformal additive printing approach to directly convert solution‐processed 2D nanoplates and 1D nanorods into high‐performing flexible devices is reported. The flexible films printed using Sb2Te3nanoplates and subsequently sintered at 400 °C demonstrate exceptional thermoelectric power factor of 1.5 mW m−1K−2over a wide temperature range (350–550 K). By synergistically combining Sb2Te32D nanoplates with Te 1D nanorods, the power factor of the flexible film reaches an unprecedented maximum value of 2.2 mW m−1K−2at 500 K, which is significantly higher than the best reported values for p‐type flexible thermoelectric films. A fully printed flexible generator device exhibits a competitive electrical power density of 7.65 mW cm−2with a reasonably small temperature difference of 60 K. The versatile printing method for directly transforming nanoscale building blocks into functional devices paves the way for developing not only flexible energy harvesters but also a broad range of flexible/wearable electronics and sensors. 
    more » « less
  5. High-throughput printing-based fabrication has emerged as a key enabler of flexible electronics given its unique capability for low-cost integration of circuits based on printed thin film transistors (TFTs). Research in printing inorganic metal oxides has revealed the potential for fabricating oxide TFTs with an unmatched combination of high electron mobility and optical transparency. Here, we highlight recent developments in ink chemistry, printing physics, and material design for high-mobility metal oxide transistors. We consider ongoing challenges for this field that include lowering process temperatures, achieving high speed and high resolution printing, and balancing device performance with the need for high mechanical flexibility. Finally, we provide a roadmap for overcoming these challenges with emerging synthetic strategies for fabricating 2D oxides and complementary TFT circuits for flexible electronics. 
    more » « less