Soft, stretchable sensors, such as artificial skins or tactile sensors, are attractive for numerous soft robotic applications due to the low material compliance. Conductive polymers are a necessary component of many soft sensors, and this work presents the electromechanical characterization of 3D-printable conductive polymer composites. Dog-bone shaped samples were 3D printed using a digital light processing (DLP)-based 3D printer for characterization. The 3D printable resin consists of monomer, crosslinker, conductive nano-filler, and a photo-initiator. The characterization was performed in two tracks. First, the effect of two different crosslinkers was investigated with different compositions and second, the effect of concentration of conductive nano-fillers was explored. Crosslinkers were chosen by referring to previous studies, and carbon nanotubes (CNTs) were utilized as conductive nano-fillers. The samples were 3D printed and characterized using an electromechanical test setup. To demonstrate utility for 3D printed soft robotics, a capacitance-based joystick sensor composed of both conductive and non-conductive resins was 3D printed.
more »
« less
Evaluation of commercially-available conductive filaments for 3D printing flexible circuits on paper
Three commercially-available conductive filaments were evaluated for 3D printing flexible circuits on paper. While all three filaments were printed successfully, the resulting conductive traces were found to have significantly different impedances when characterized by electrochemical impedance spectroscopy. Using a graphite-doped polylactic acid filament, the flexibility of paper-based conductive traces was evaluated, methods of integrating common electrical and electronic components with the conductive traces were demonstrated, and the resistive heating of the traces was characterized. The ability to 3D print conductive traces on paper using commercially available materials opens many opportunities for rapid prototyping of flexible electronics and for integrating electronic circuits with paper-based microfluidic devices.
more »
« less
- Award ID(s):
- 1709740
- PAR ID:
- 10343141
- Date Published:
- Journal Name:
- PeerJ Materials Science
- Volume:
- 4
- Page Range / eLocation ID:
- e21
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)This paper proposes a new way of designing and fabricating conformal flexible electronics on free-form surfaces, which can generate woven flexible electronics designs conforming to free-form 3D shapes with 2D printed electronic circuits. Utilizing our recently proposed foliation-based 3D weaving techniques, we can reap unprecedented advantages in conventional 2D electronic printing. The method is based on the foliation theory in differential geometry, which divides a surface into parallel leaves. Given a surface with circuit design, we first calculate a graph-value harmonic map and then create two sets of harmonic foliations perpendicular to each other. As the circuits are processed as the texture on the surface, they are separated and attached to each leaf. The warp and weft threads are then created and manually woven to reconstruct the surface and reconnect the circuits. Notably, The circuits are printed in 2D, which uniquely differentiates the proposed method from others. Compared with costly conformal 3D electronic printing methods requiring 5-axis CNC machines, our method is more reliable, more efficient, and economical. Moreover, the Harmonic foliation theory assures smoothness and orthogonality between every pair of woven yarns, which guarantees the precision of the flexible electronics woven on the surface. The proposed method provides an alternative solution to the design and physical realization of surface electronic textiles for various applications, including wearable electronics, sheet metal craft, architectural designs, and smart woven-composite parts with conformal sensors in the automotive and aerospace industry. The performance of the proposed method is depicted using two examples.more » « less
-
Commercially available fused deposition modeling (FDM) printers have yet to bridge the gap between printing soft, flexible materials and printing hard, rigid materials. This work presents a custom printer solution, based on open-source hardware and software, which allows a user to print both flexible and rigid polymer materials. The materials printed include NinjaFlex, SemiFlex, acrylonitrile-butadiene-styrene (ABS), Nylon, and Polycarbonate. In order to print rigid materials, a custom, high-temperature heated bed was designed to act as a print stage. Additionally, high temperature extruders were included in the design to accommodate the printing requirements of both flexible and rigid filaments. Across 25 equally spaced points on the print plate, the maximum temperature difference between any two points on the heated bed was found to be ∼9°C for a target temperature of 170°C. With a uniform temperature profile across the plate, functional prints were achieved in each material. The print quality varied, dependent on material; however, the standard deviation of layer thicknesses and size measurements of the parts were comparable to those produced on a Zortrax M200 printer. After calibration and further process development, the custom printer will be integrated into the NEXUS system — a multiscale additive manufacturing instrument with integrated 3D printing and robotic assembly (NSF Award #1828355).more » « less
-
Abstract Recyclable and biodegradable microelectronics, i.e., “green” electronics, are emerging as a viable solution to the global challenge of electronic waste. Specifically, flexible circuit boards represent a prime target for materials development and increasing the utility of green electronics in biomedical applications. Circuit board substrates and packaging are good dielectrics, mechanically and thermally robust, and are compatible with microfabrication processes. Poly(octamethylene maleate (anhydride) citrate) (POMaC) – a citric acid-based elastomer with tunable degradation and mechanical properties – presents a promising alternative for circuit board substrates and packaging. Here, we report the characterization of Elastomeric Circuit Boards (ECBs). Synthesis and processing conditions were optimized to achieve desired degradation and mechanical properties for production of stretchable circuits. ECB traces were characterized and exhibited sheet resistance of 0.599 Ω cm−2, crosstalk distance of <0.6 mm, and exhibited stable 0% strain resistances after 1000 strain cycles to 20%. Fabrication of single layer and encapsulated ECBs was demonstrated.more » « less
-
Abstract Electrical and mechanical integration approaches are essential for emerging hybrid electronics that must robustly bond rigid electrical components with flexible circuits and substrates. However, flexible polymeric substrates and circuits cannot withstand the high temperatures used in traditional electronic processing. This constraint requires new strategies to create flexible materials that simultaneously achieve high electrical conductivity, strong adhesion, and processibility at low temperature. Here, an electrically conductive adhesive is introduced that is flexible, electrically conductive (up to 3.25×105S m−1) without sintering or high temperature post‐processing, and strongly adhesive to various materials common to flexible and stretchable circuits (fracture energy 350 <Gc< 700 J m−2). This is achieved through a multiphase soft composite consisting of an elastomeric and adhesive epoxy network with dispersed liquid metal droplets that are bridged by silver flakes, which form a flexible and conductive percolated network. These inks can be processed through masked deposition and direct ink writing at room temperature. This enables soft conductive wiring and robust integration of rigid components onto flexible substrates to create hybrid electronics for emerging applications in soft electronics, soft robotics, and multifunctional systems.more » « less
An official website of the United States government

